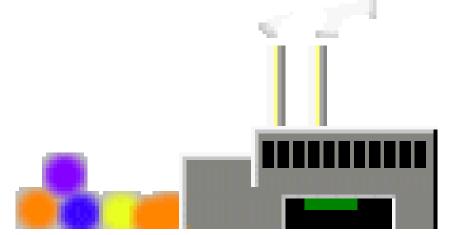
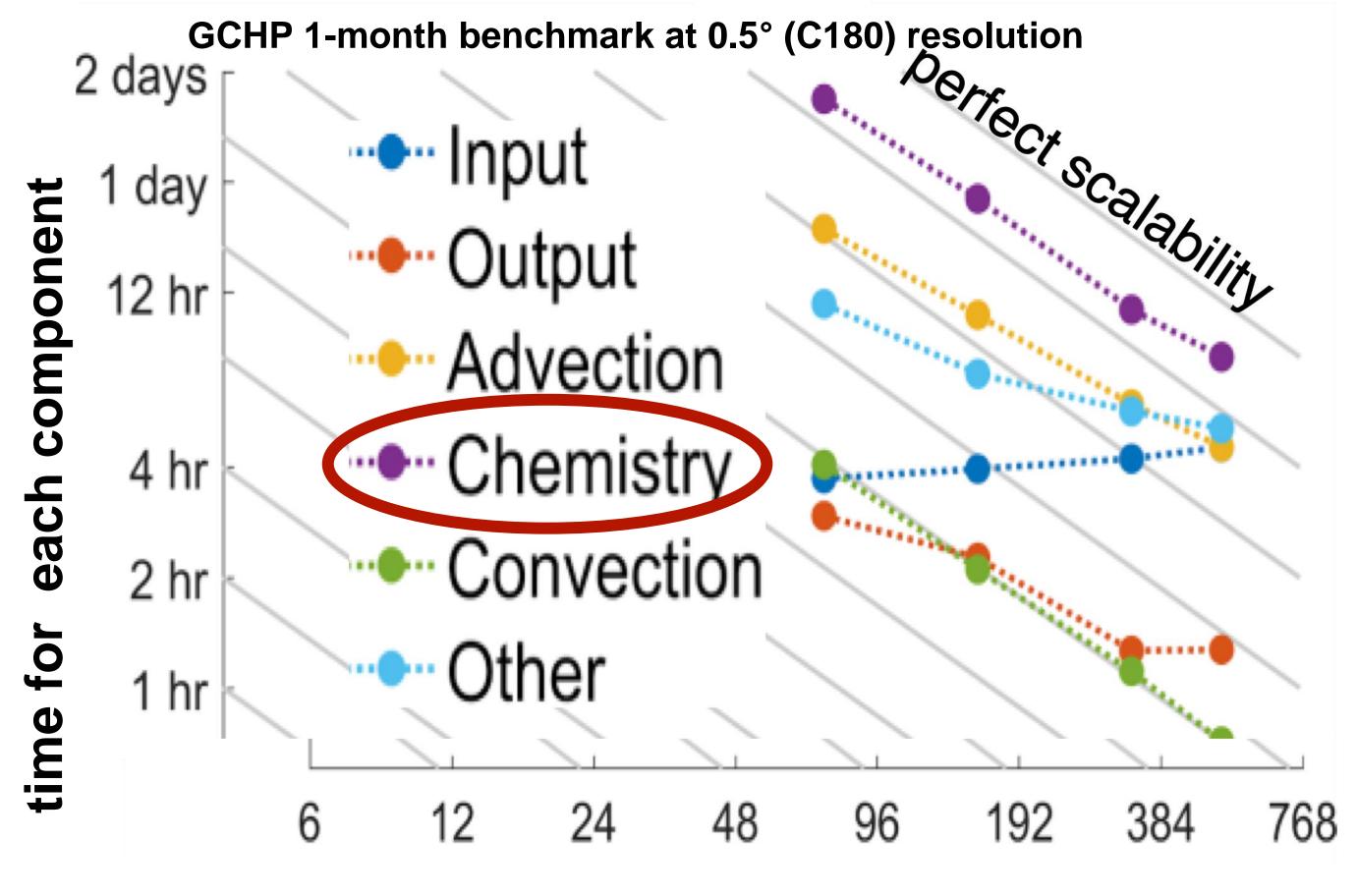
An Online-Learned Neural Network Chemical Solver for Stable Long-Term Global Simulations of Atmospheric Chemistry

Makoto Kelp with Daniel Jacob, Haipeng Lin, Melissa Sulprizio ECMWF Machine Learning Workshop 20220329



Global modeling of atmospheric chemistry is a grand

computational challenge

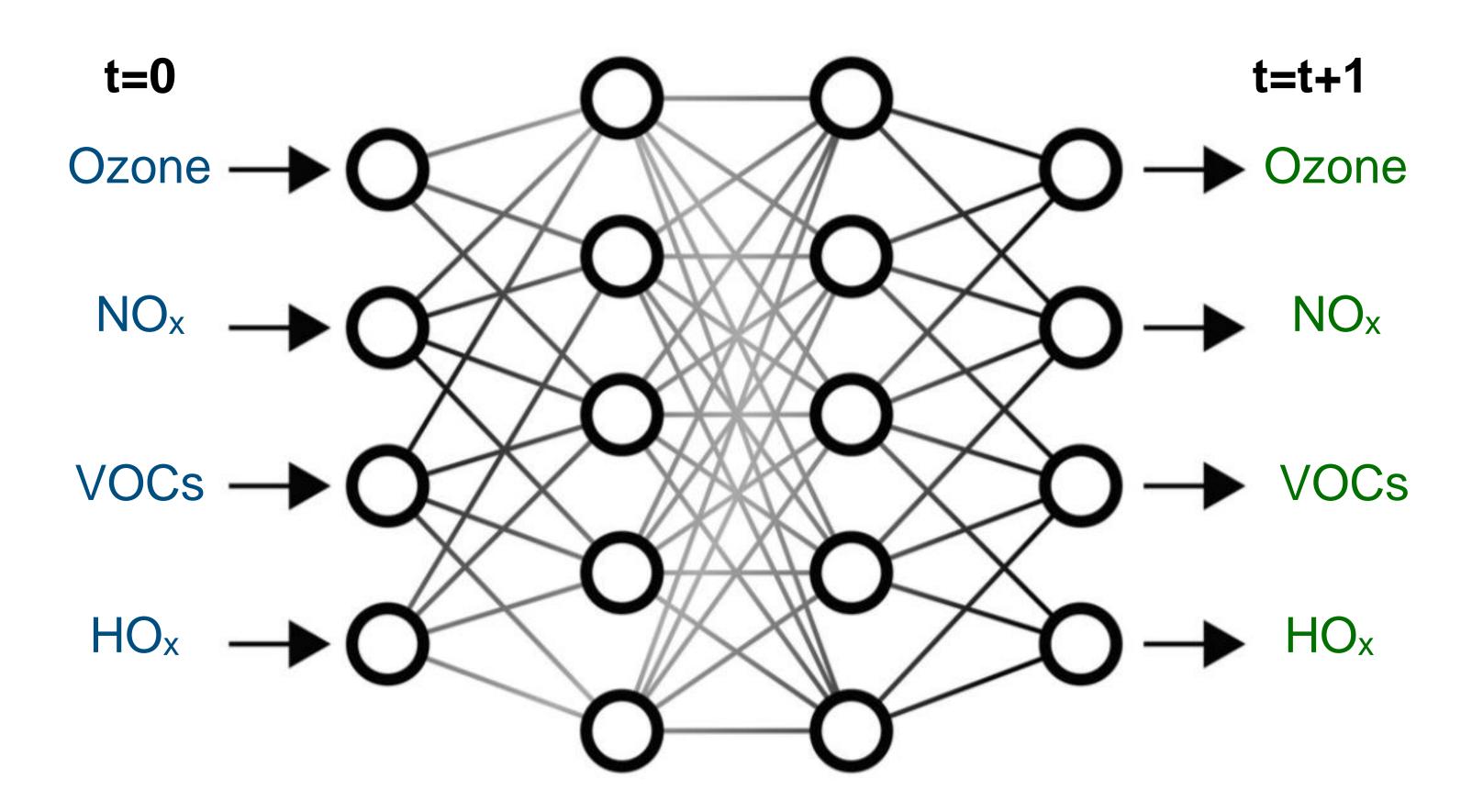


- -Chemistry dominates the cost of a simulation (~40%) even though ideally scales
- -Weather and climate models typically have ~4 variables
- -Chemistry models have hundreds of evolving species

Number of cores

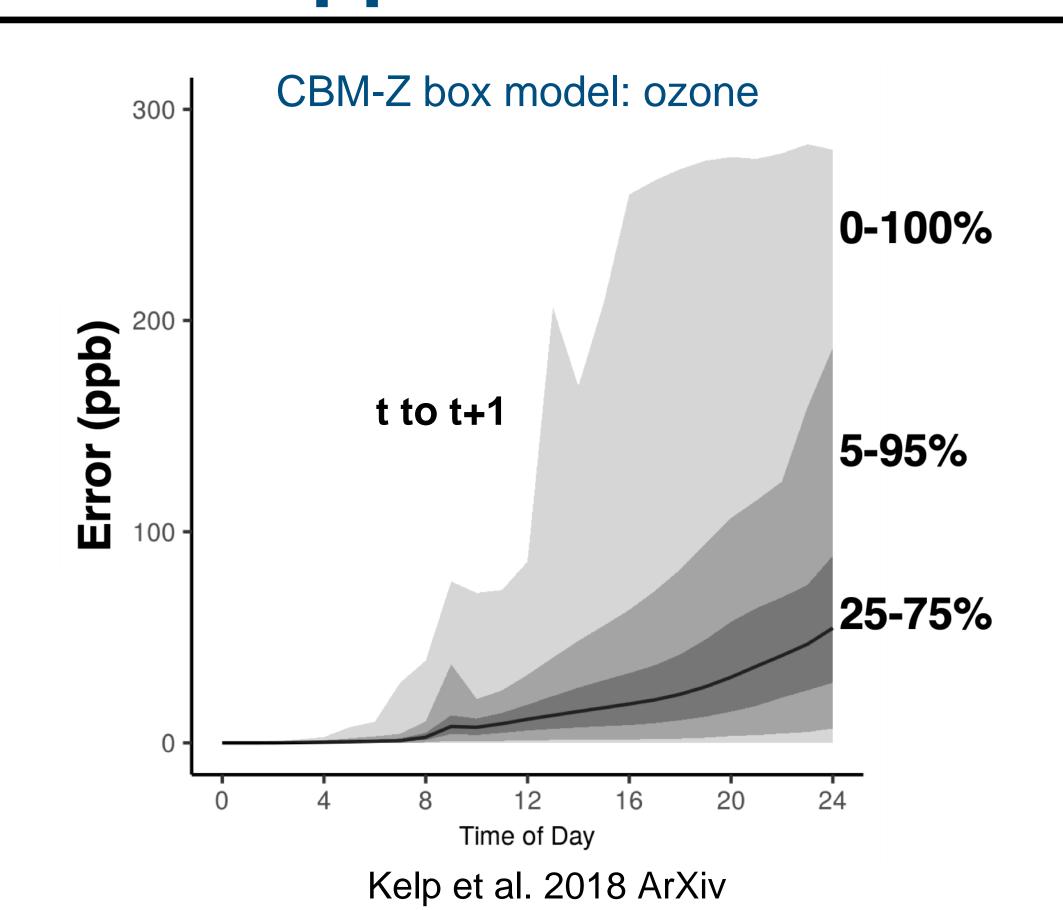
Bottom Line: Adding chemistry into an Earth system model becomes computationally infeasible

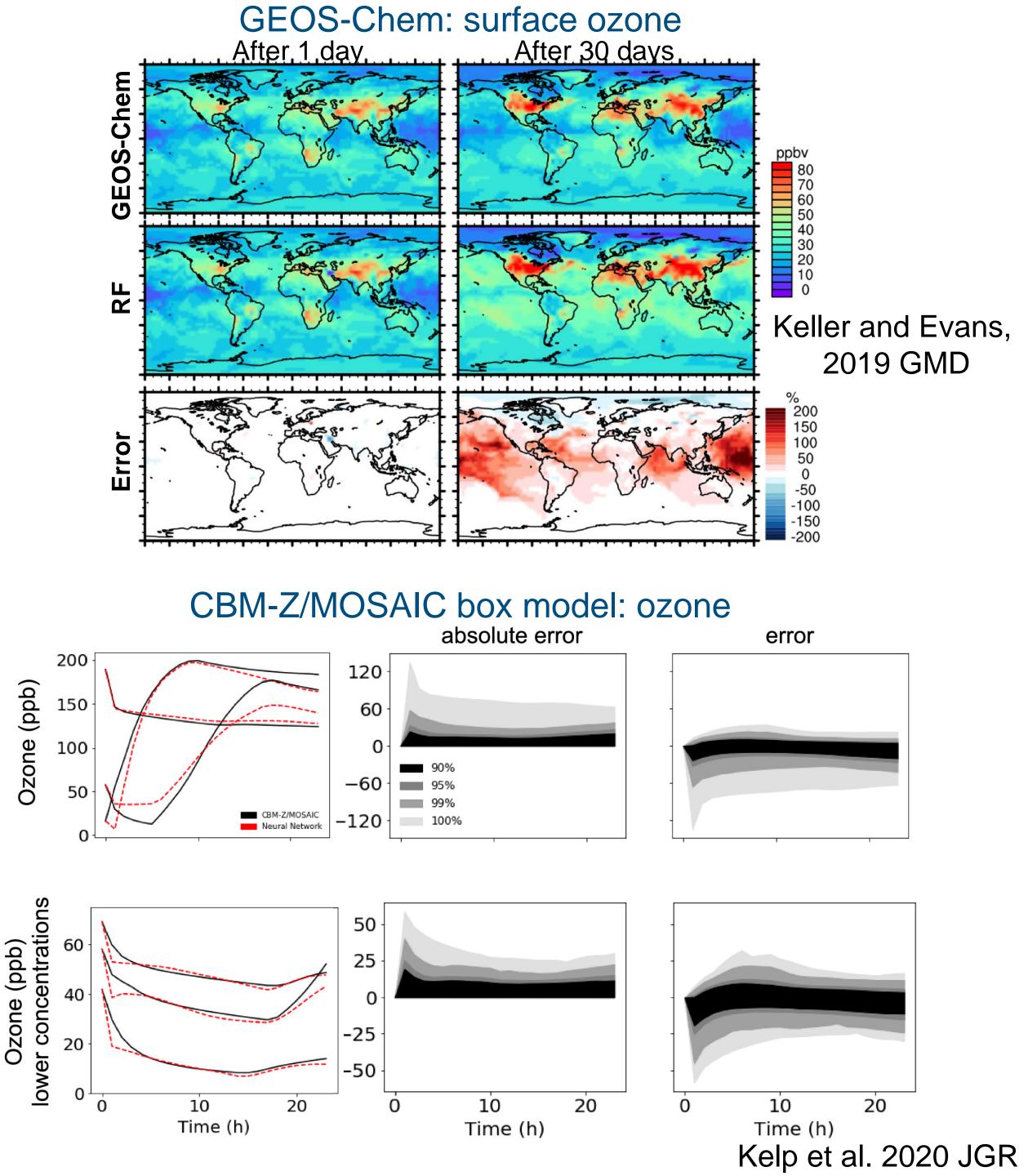
Machine learning (ML) methods can provide a solution to this problem



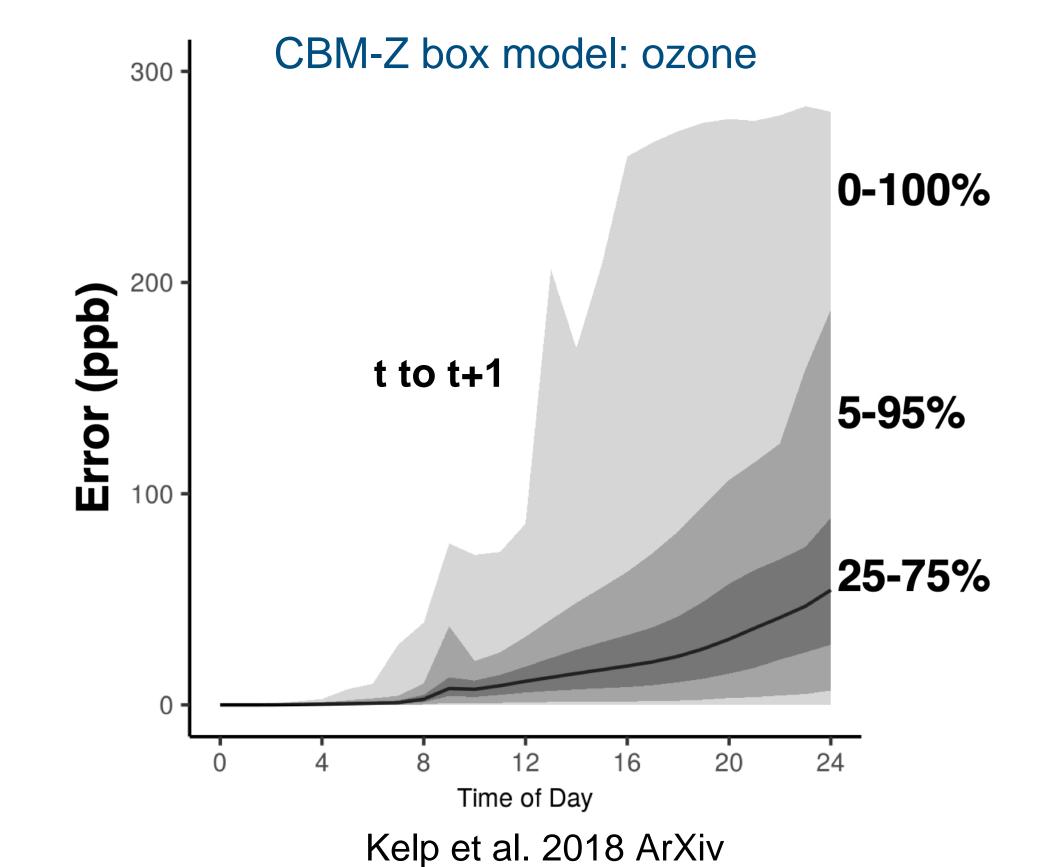
- 1. Nonparametric, universal function approximators
- 2. Learn to predict based on large dataset of repeated patterns
- 3. Proven to speed up solving ODEs at orders of magnitude (Malek and Shekari, 2006)

Past ML chemical solver attempts have encountered runaway error growth and have been limited to box model approaches





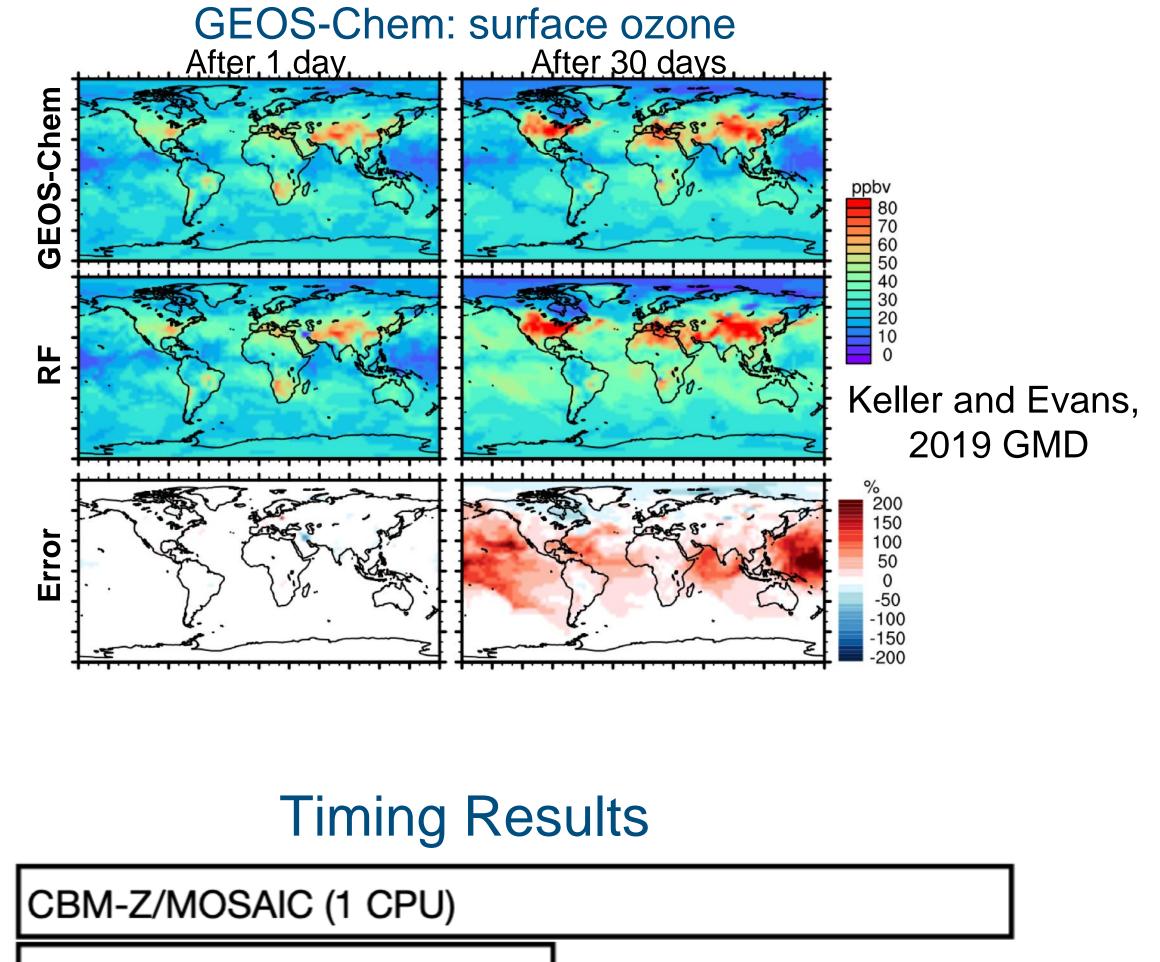
Past ML chemical solver attempts have encountered runaway error growth and have been limited to box model approaches

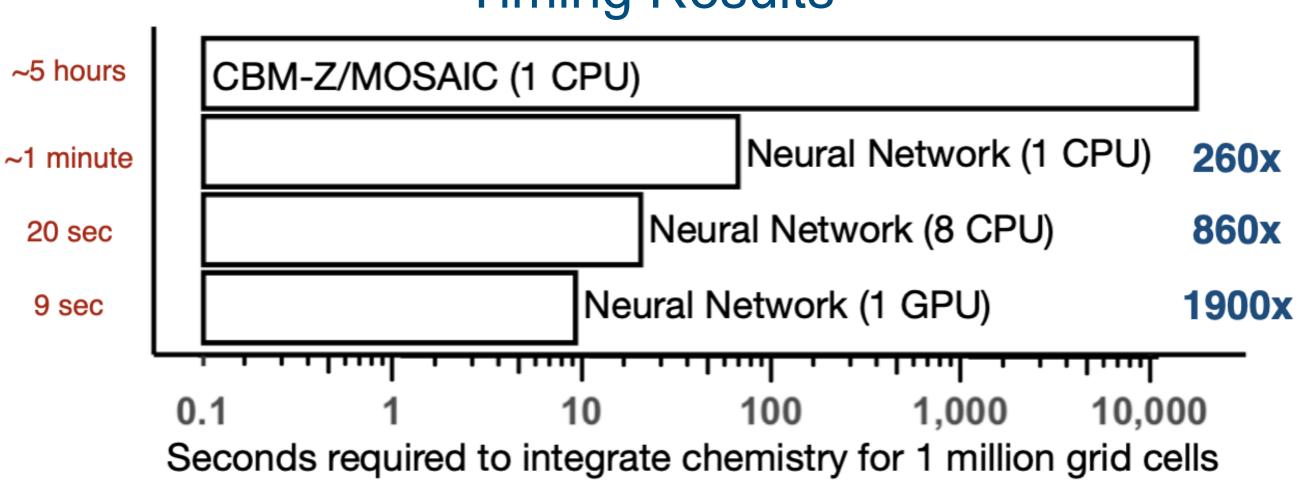


~5 hours

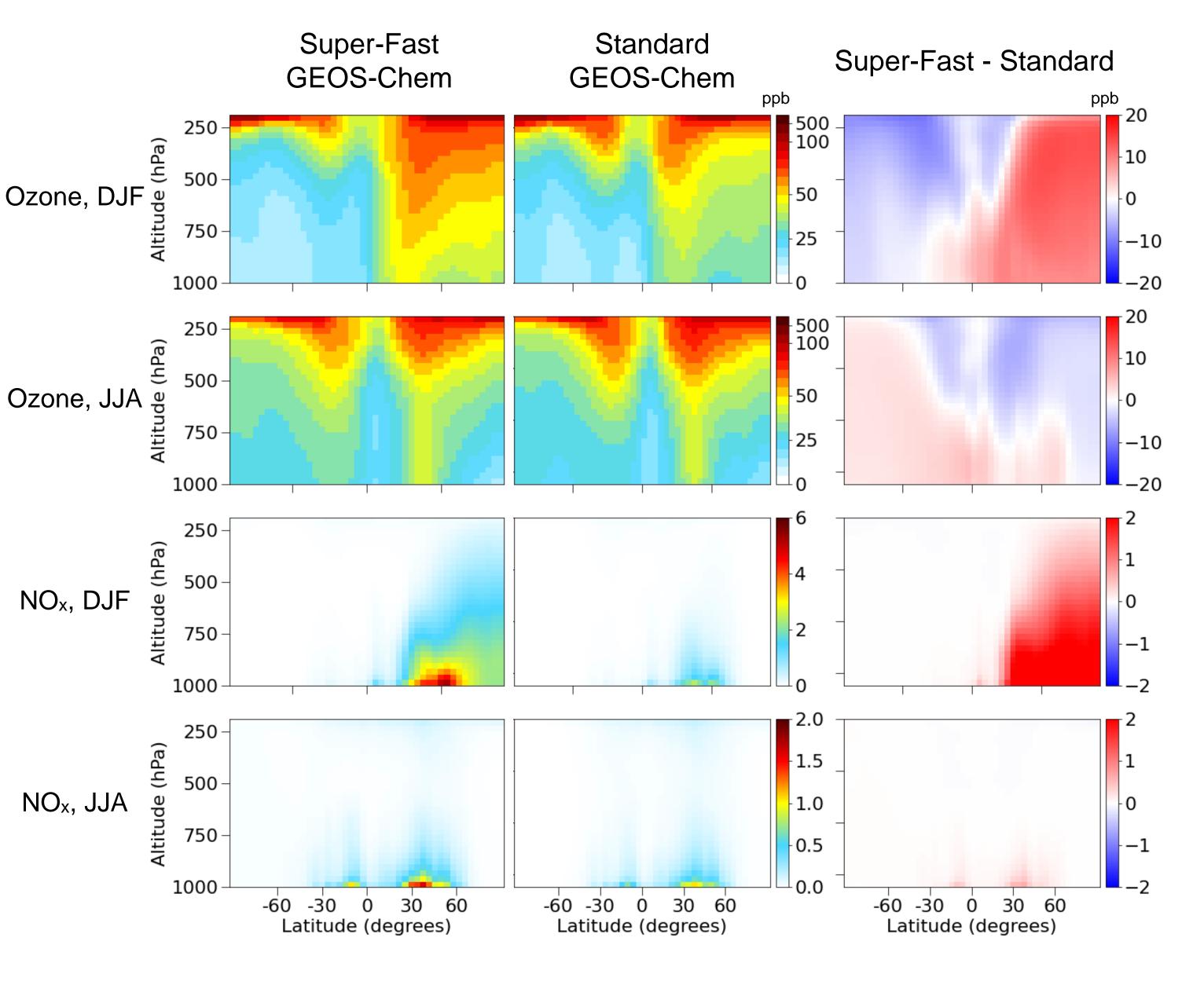
20 sec

9 sec





The 'Super Fast' chemical mechanism will allow us to better define ML methods and understand limitations in a full 3-D global modeling framework



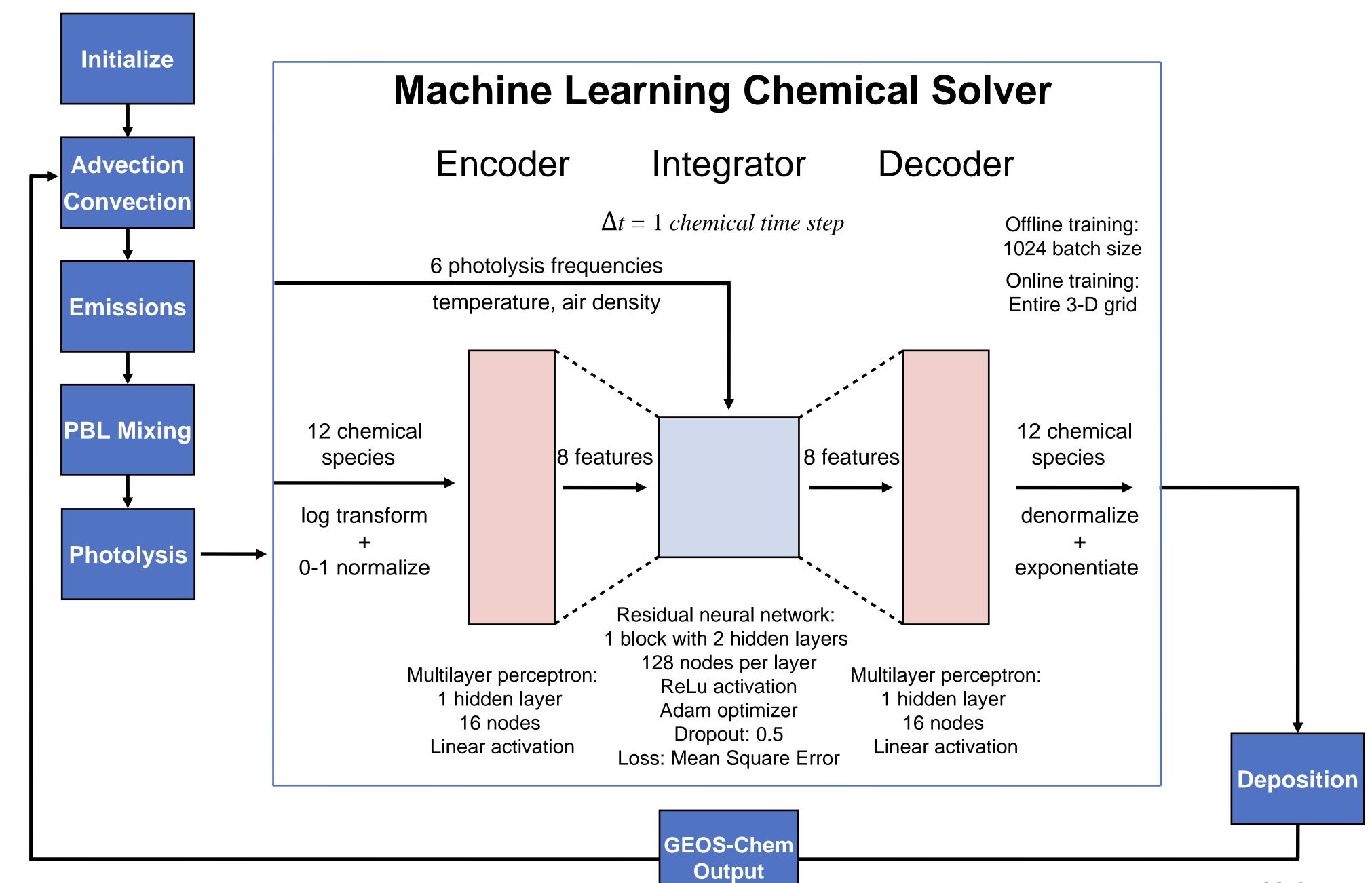
- Global mechanism with 12 species [Brown-Steiner et al., 2018]
- Benchmarked in GEOS-Chem v12.0.0
- 4x5° resolution
- 1-hour chemical time step output 20 variables:
- 2 physical var: T, air density 6 photolysis frequencies
- 12 gas-phase species

1 month dataset would contain:

lonxlatxlevxdaysxhours = 46x72x~25x31x24 ->~62 million samples

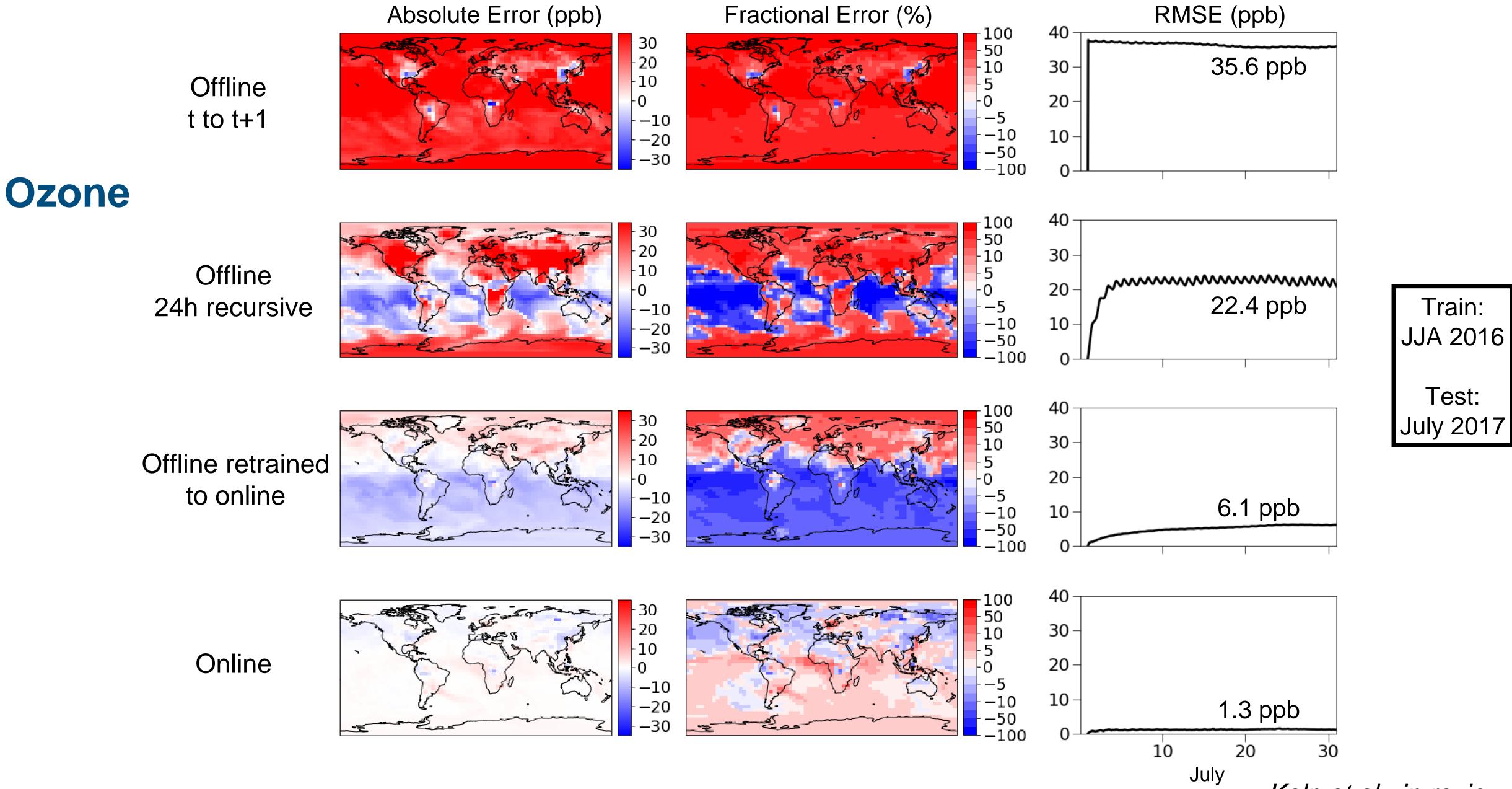
Training: 2016, Test: 2017

GEOS-Chem



Kelp et al., in review

Online training improves accuracy and stability over offline training

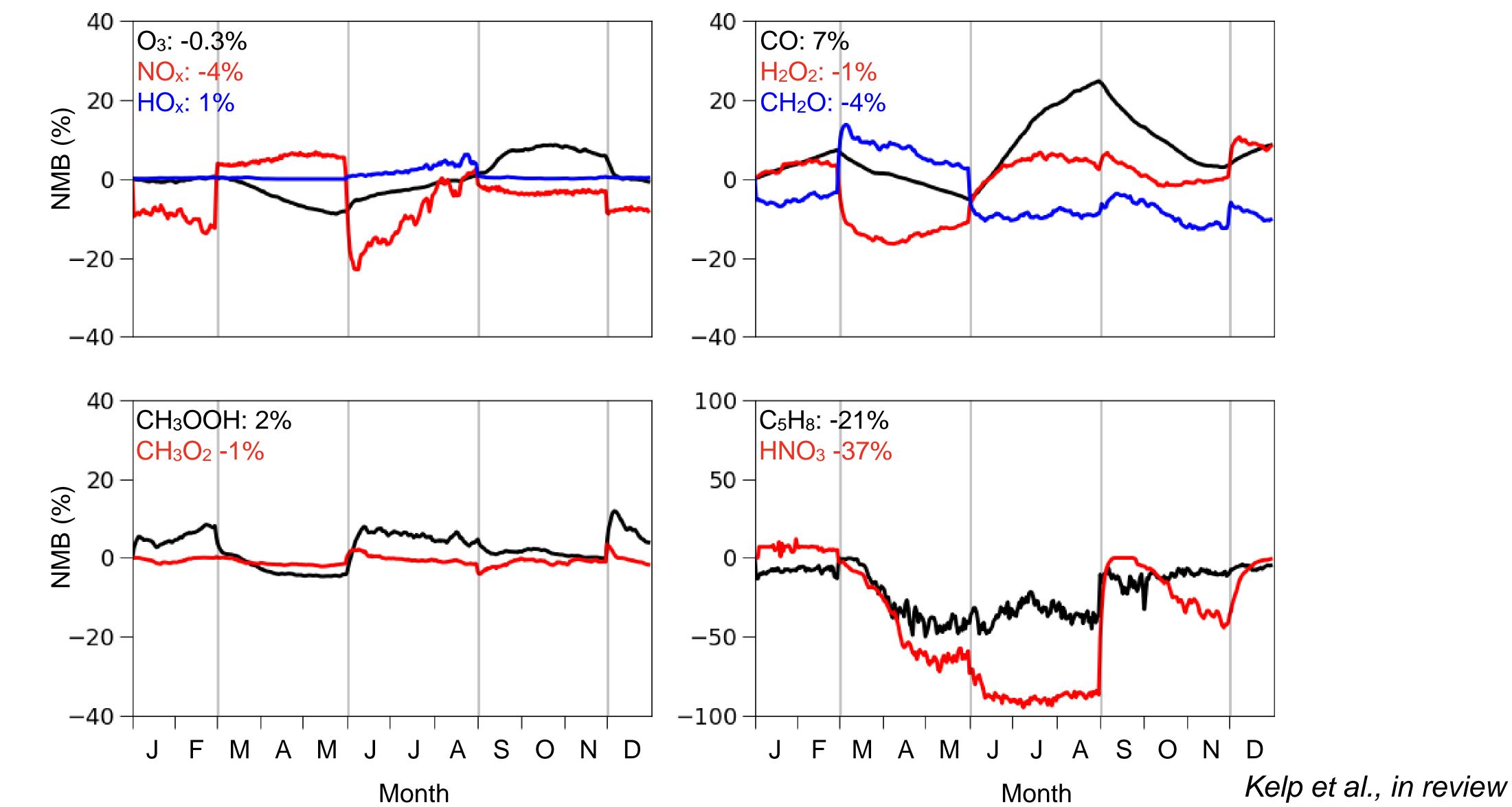


Kelp et al., in review

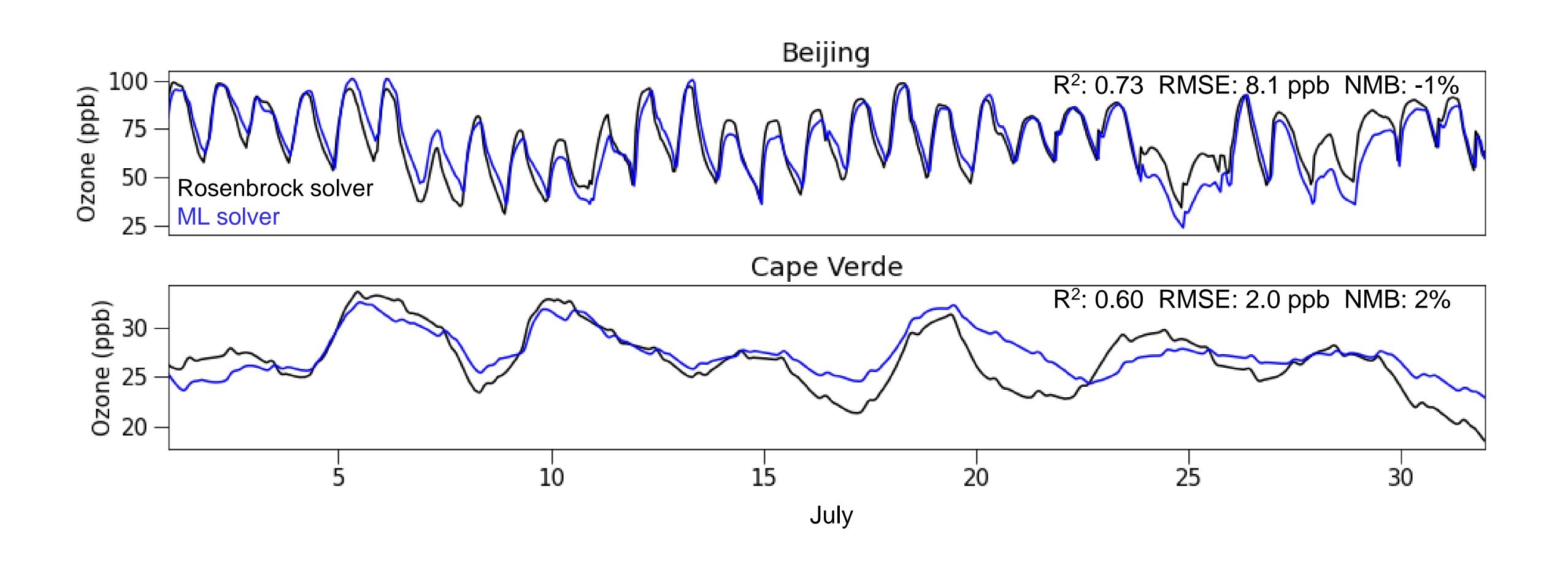
ML solvers have different seasonal fits of accuracy

Separate ML solvers for:

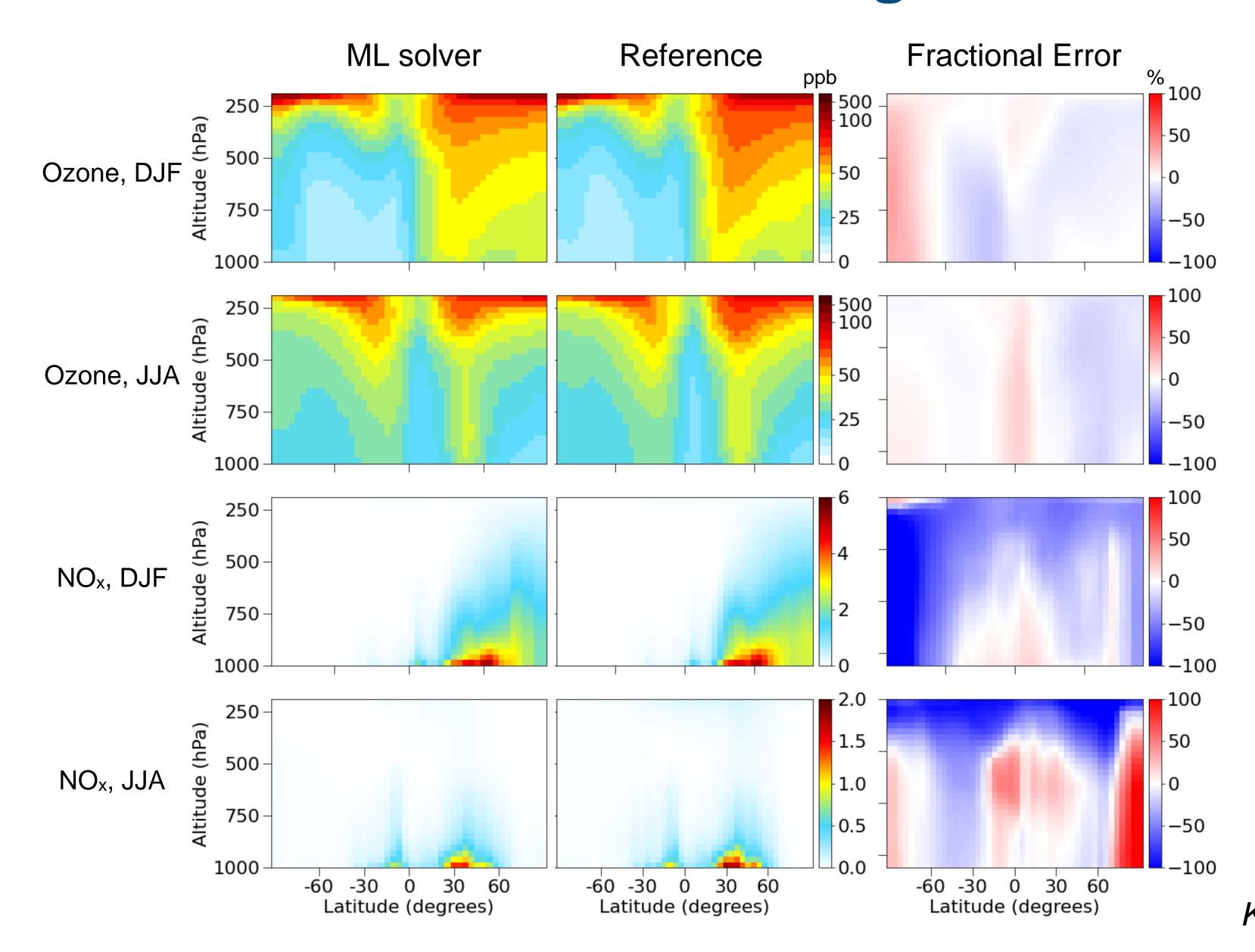
-Season



ML solver able to capture the diurnal and synoptic variability of ozone at polluted and clean sites



Errors are largest at remote latitudes and high altitudes due to chemical error accumulation as air ages



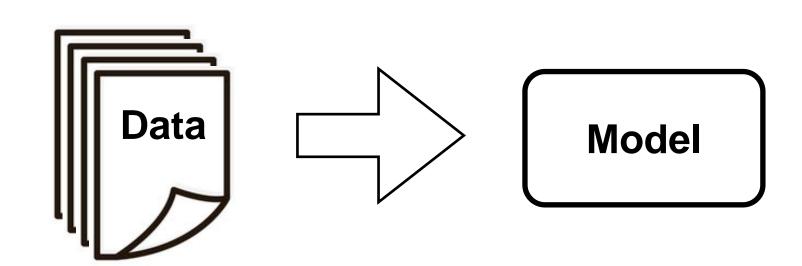
Takeaways

- -Application of ML chemical solver in global 3-D atmospheric chemistry models may require online training.
- -Stable year-long global simulation of chemistry can be achieved with a ML solver applied to the Super-Fast mechanism in GEOS-Chem.
- -Computational speedup is five-fold relative to the reference Rosenbrock solver in GEOS-Chem.
- -Large regional biases for ozone and NO_x under remote conditions where chemical aging leads to error accumulation.
 - -Regional biases remain a major limitation for practical application, and ML emulation would be more difficult in a more complex mechanism.

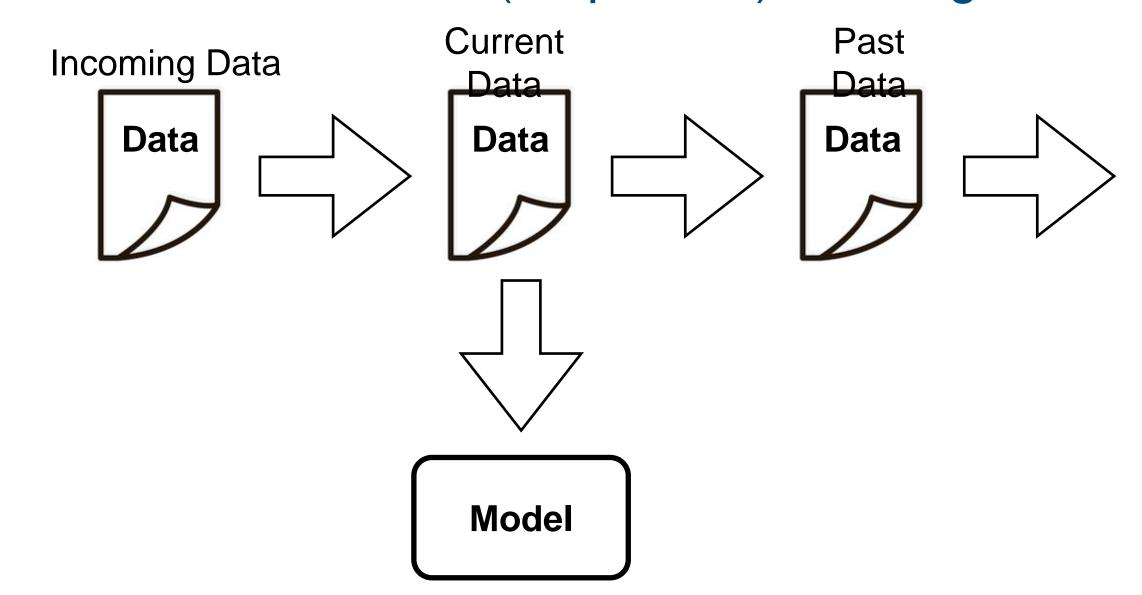
offille leaffilly prevents overfitting to training

data

Offline (batch) learning



Online (sequential) learning



Pros:

Simple to code

Fast, easy to train + manipulate data (recursive train)

Cons:

Overfitting (overly reliant on training data)

Generate massive data archives Under/oversample chemical environments

Pros:

Cannot overfit: each data point of Representative realizations. No need to generate data archive

Cons:

Hard to implement
Very expensive training! (Each Climited observational window
"Catastrophic forgetting problem

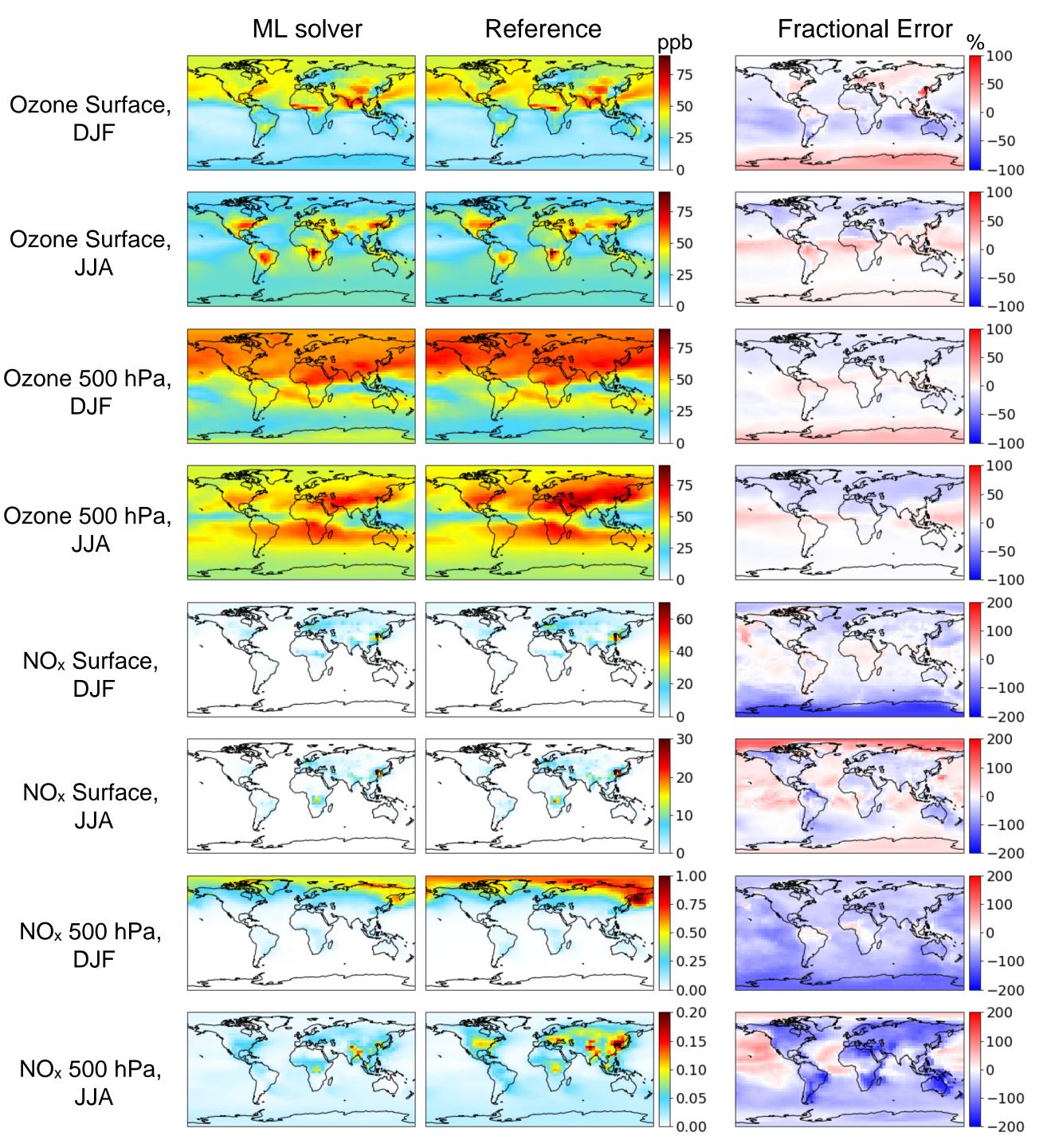
New model framework 1) compresses dimensionality and 2) captures slower chemical modes during <u>training</u>



Mechanism: CBM-Z/MOSAIC Box model

101 species: 77 gas, 24 aerosol

4 meterological variables: T, P, RH, Solar angle

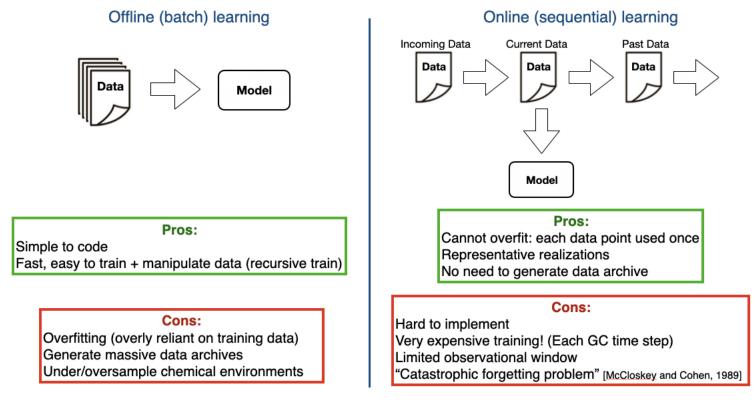


Largest errors are in polar sunlit conditions where the effect of chemical aging during long-range transport is particularly important

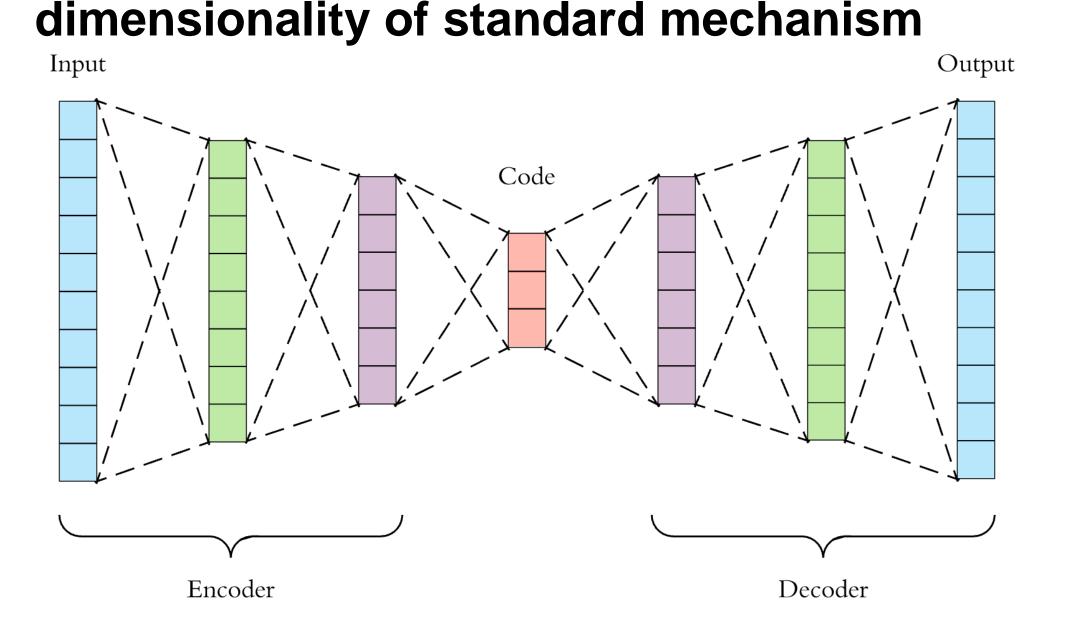
Steps moving forward

1. Mimic and improve online training offline

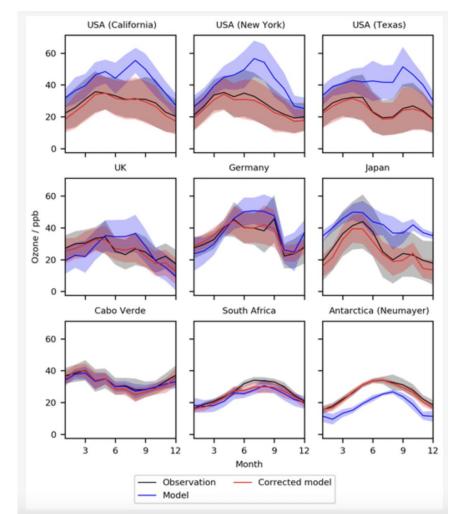
Online learning prevents overfitting to training data



2. Use Encoder/Decoder to reduce



3. Train a ML bias corrector to nudge ML toward Rosenbrock



Ivatt and Evans (2020)

4. Train a GAN for failure prediction and call Rosenbrock

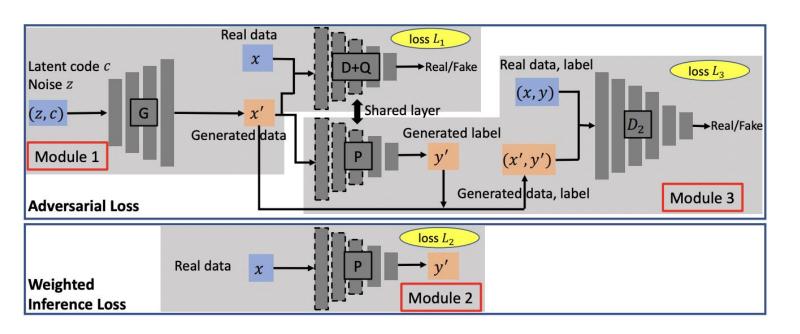


Fig. 3: GAN-FP architecture: there are 3 modules. Module 1 (network G, D and Q) is used to generate failure and non-failure samples using adversarial loss L_1 (Eq.(3)). Module 2 (network P) is an inference module with weighted loss L_2 (Eq.(5)), which trains a deep neural network using real data and label. Module 3 (network P and D_2) is a modified CGAN module with adversarial loss L_3 (Eq.(6)), where network D_2 takes data-label pair as input and tries to distinguish whether the pair comes from real data label (\mathbf{x}, y) or from generated data label (\mathbf{x}', y') .

Zheng et al. (2019)

New ML model able to prevent error accumulation over time horizon of interest + achieve orders-of-magnitude speedups

