Neural-network parameterization of subgrid momentum transport learned from a high-resolution simulation

Janni Yuval, Paul O'Gorman and Peidong Wang

Support from Houghton-Lorenz Fellowship

MIT Environmental Solutions Initiative and the NSF

Parameterizations are simplified representations of unresolved processes and they introduce inaccuracies to climate models

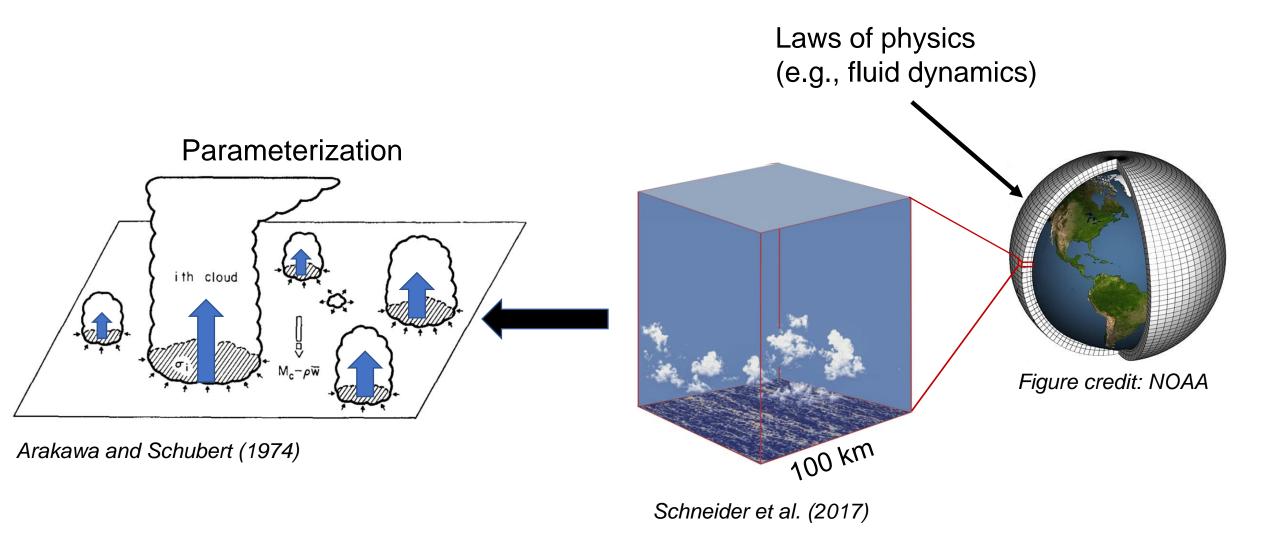
Laws of physics (e.g., fluid dynamics)

Figure credit: NOAA

Parameterizations are simplified representations of unresolved processes and they introduce inaccuracies to climate models

Laws of physics (e.g., fluid dynamics) Figure credit: NOAA 100 km Schneider et al. (2017)

Parameterizations are simplified representations of unresolved processes and they introduce inaccuracies to climate models



A different approach to parameterization: Use machine learning to create new parameterizations trained on high-resolution models

High resolution model

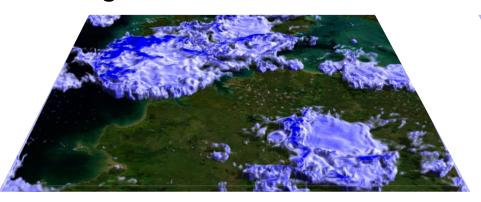


Figure credit: NASA

A different approach to parameterization: Use machine learning to create new parameterizations trained on high-resolution models

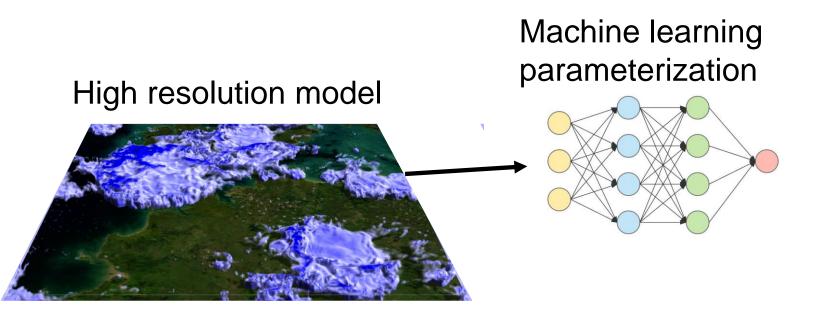


Figure credit: NASA

A different approach to parameterization:
Use machine learning to create new parameterizations trained on high-resolution models

Figure credit: NASA

Machine learning parameterization High resolution model

Figure credit: NOAA

A different approach to parameterization:
Use machine learning to create new parameterizations trained
on high-resolution models

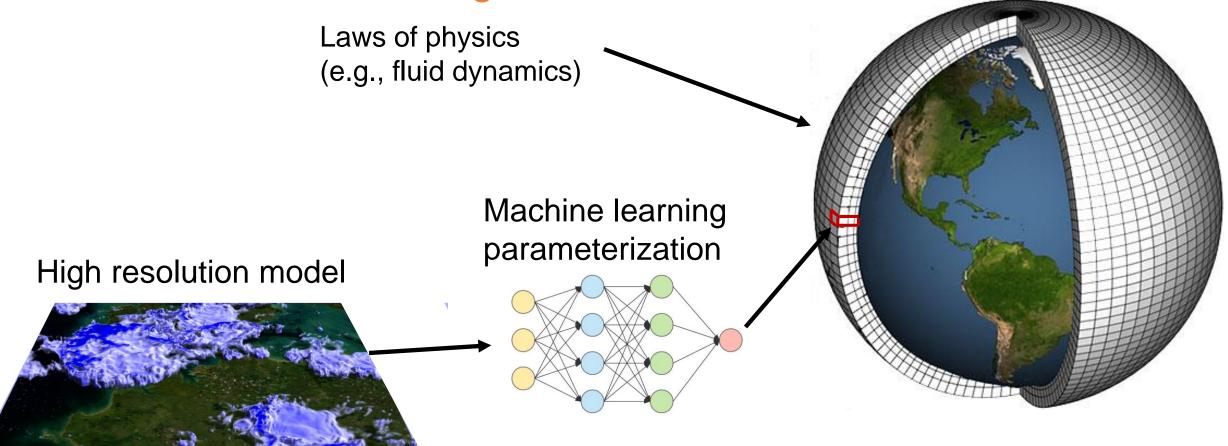
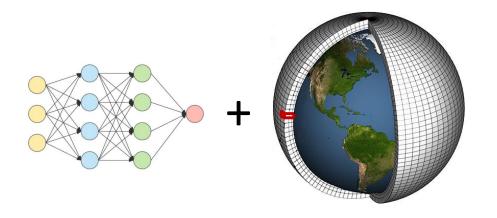
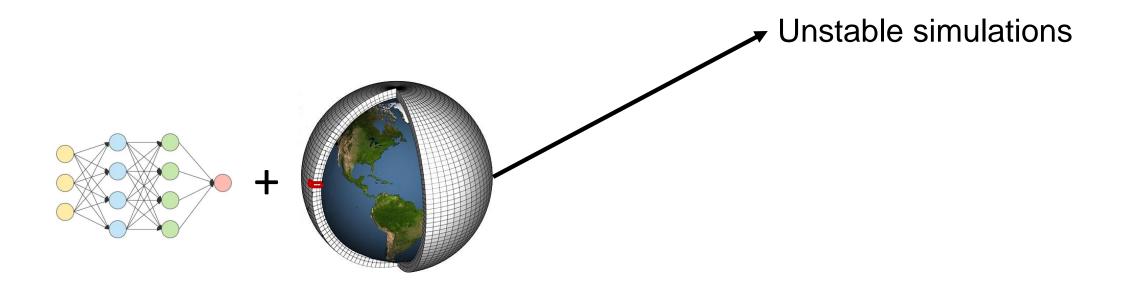
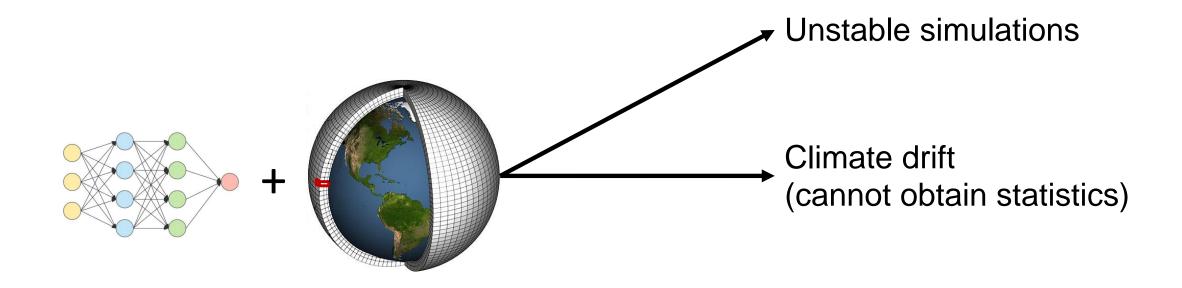
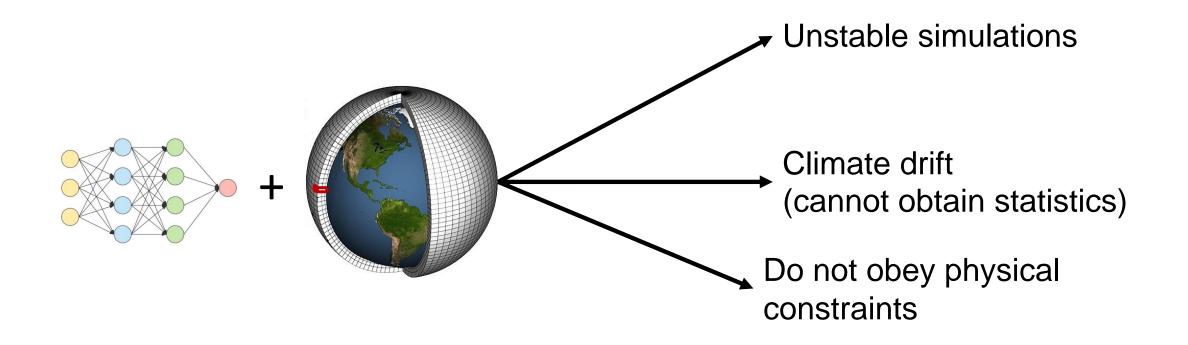


Figure credit: NOAA

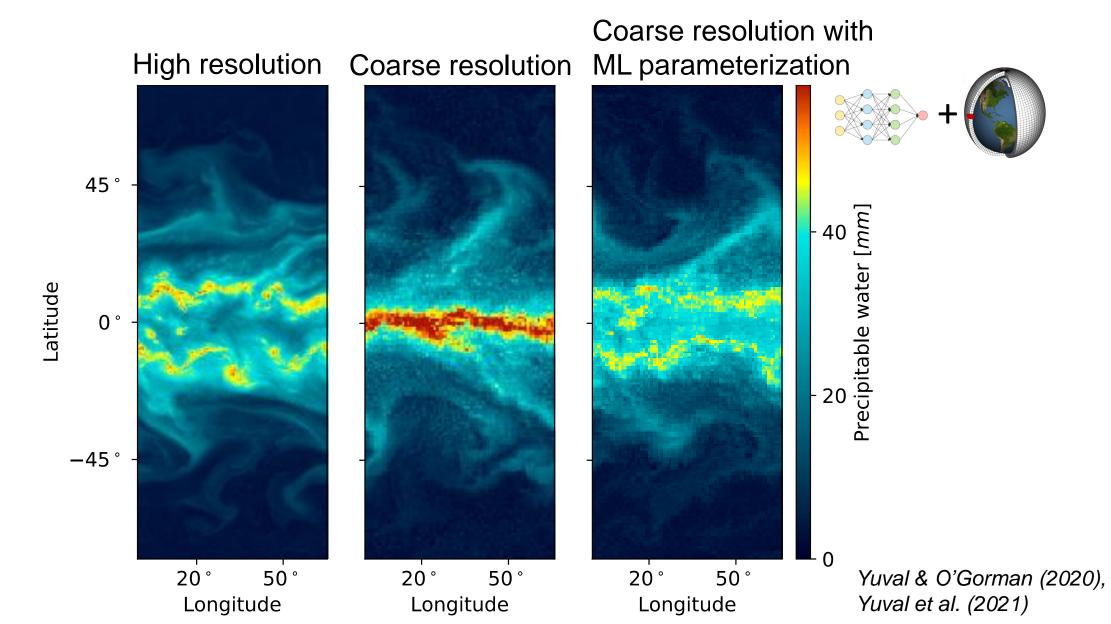








Previous study: we achieved physically consistent parameterization that leads to stable and accurate simulations



Goal: to use machine learning to develop physically-consistent subgrid momentum parameterization from a fully 3D high-resolution simulation

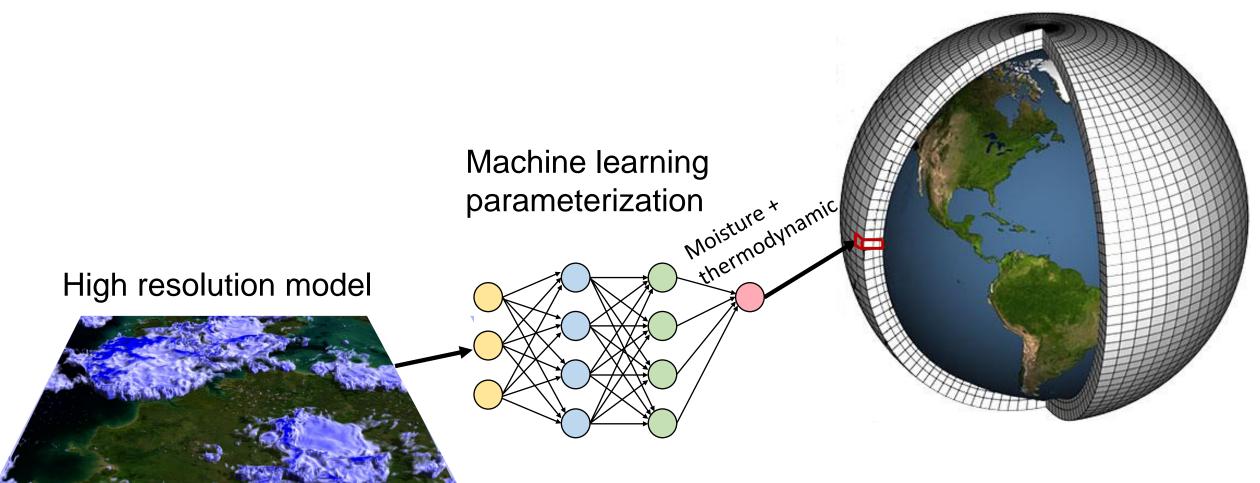


Figure credit: NOAA

Goal: to use machine learning to develop physically-consistent subgrid momentum parameterization from a fully 3D high-resolution simulation

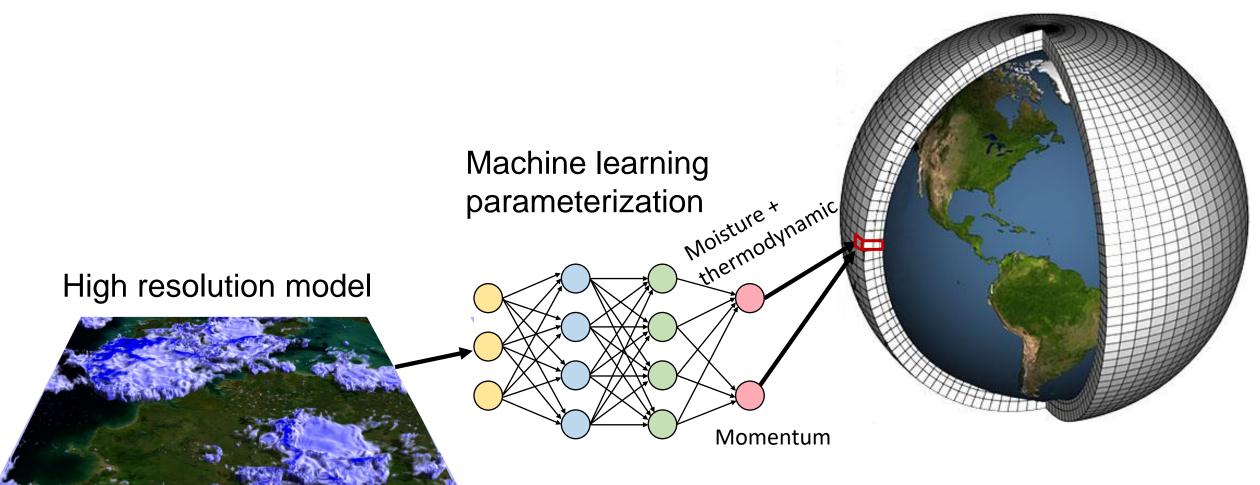


Figure credit: NOAA

Subgrid processes such as convection and gravity waves transport horizontal momentum in the vertical

Convective momentum transport

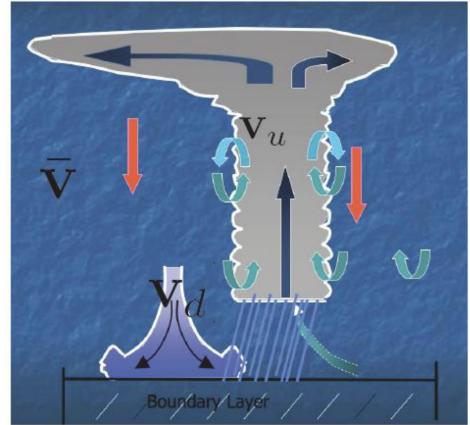


Image credit: Joe Tribbia presentation

E.g., Wu et al. (2007), Song et al. (2008), Woelfle et al. (2018)

Subgrid processes such as convection and gravity waves transport horizontal momentum in the vertical

245

Convective momentum transport

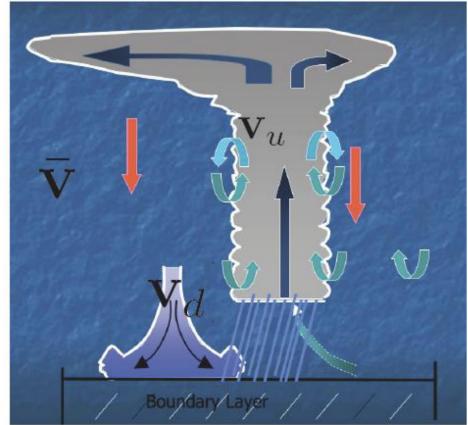
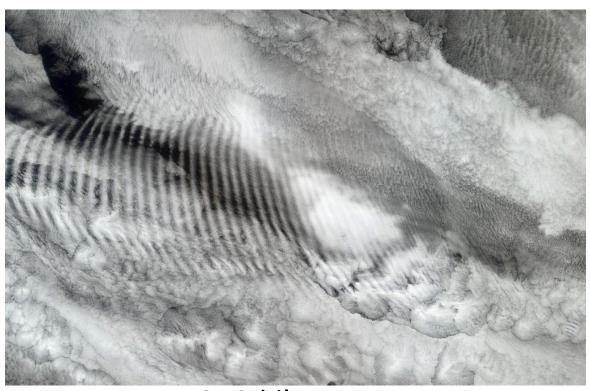


Image credit: Joe Tribbia presentation

E.g., Wu et al. (2007), Song et al. (2008), Woelfle et al. (2018)

Gravity waves above the Indian Ocean



378 kilometers

Image credit: NASA/GSFC/LaRC/JPL, MISR TEAM

E.g., Dunkerton (1997), Ray et al. (1998), Orr et al. (2010)

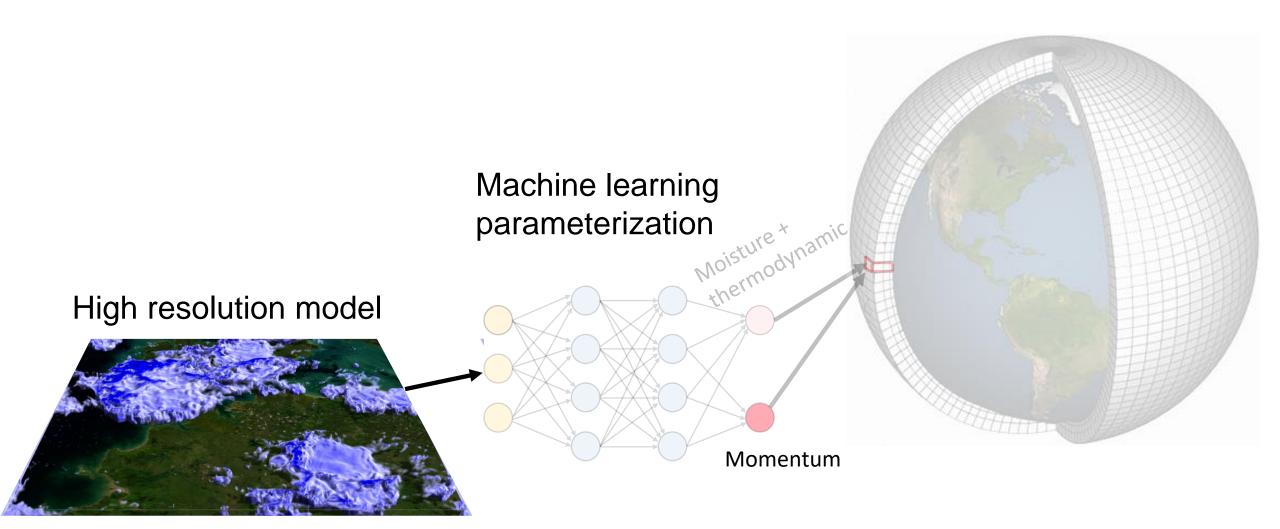
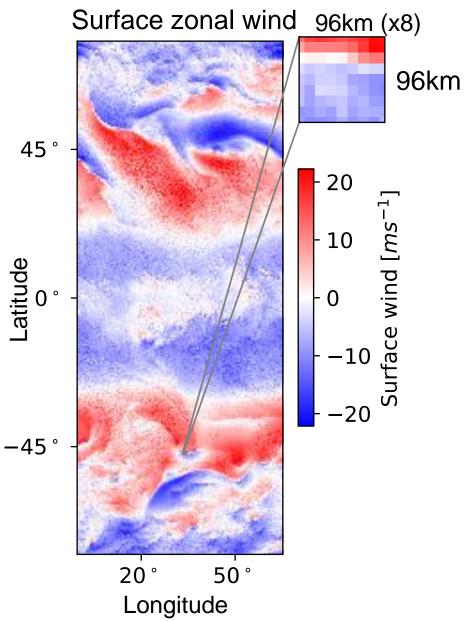
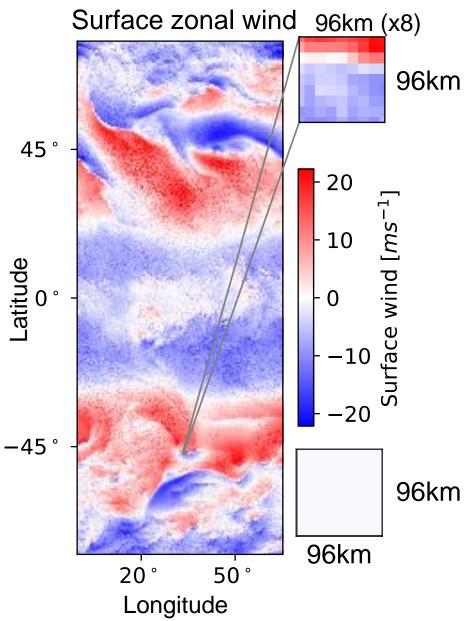
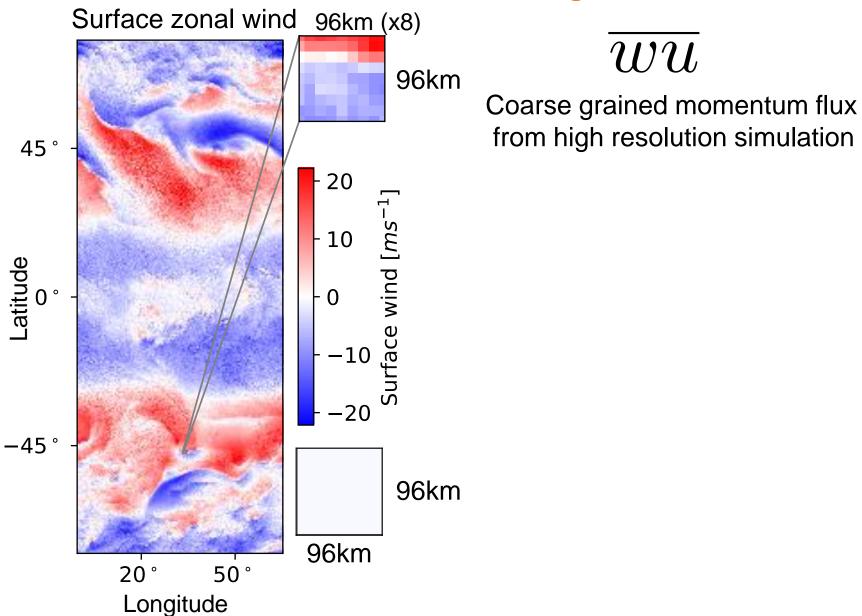
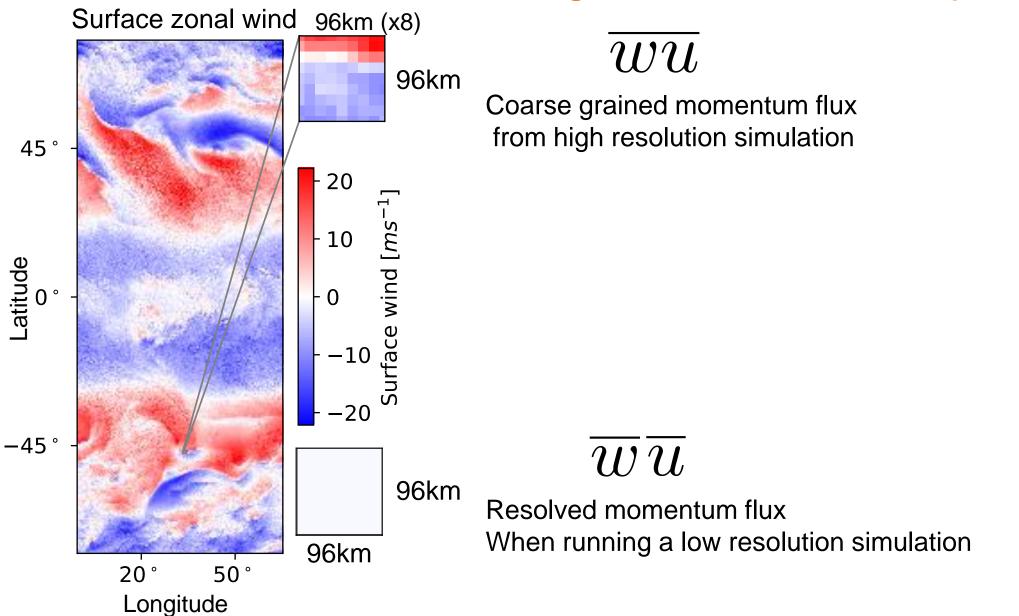


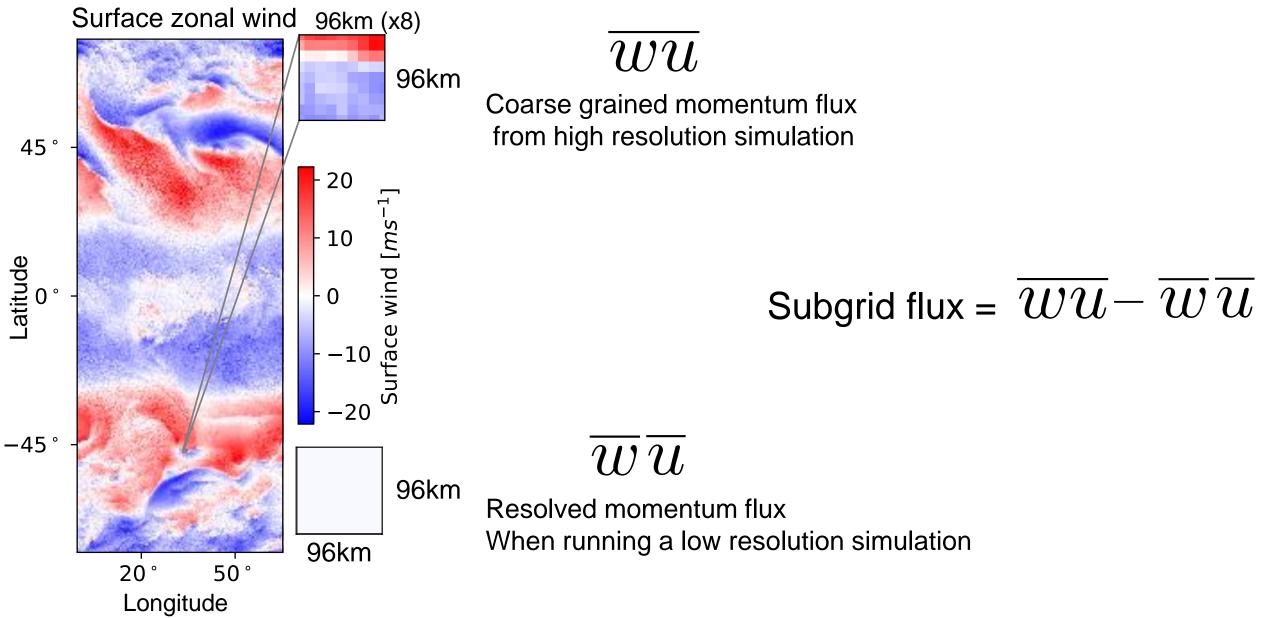
Figure credit: NOAA

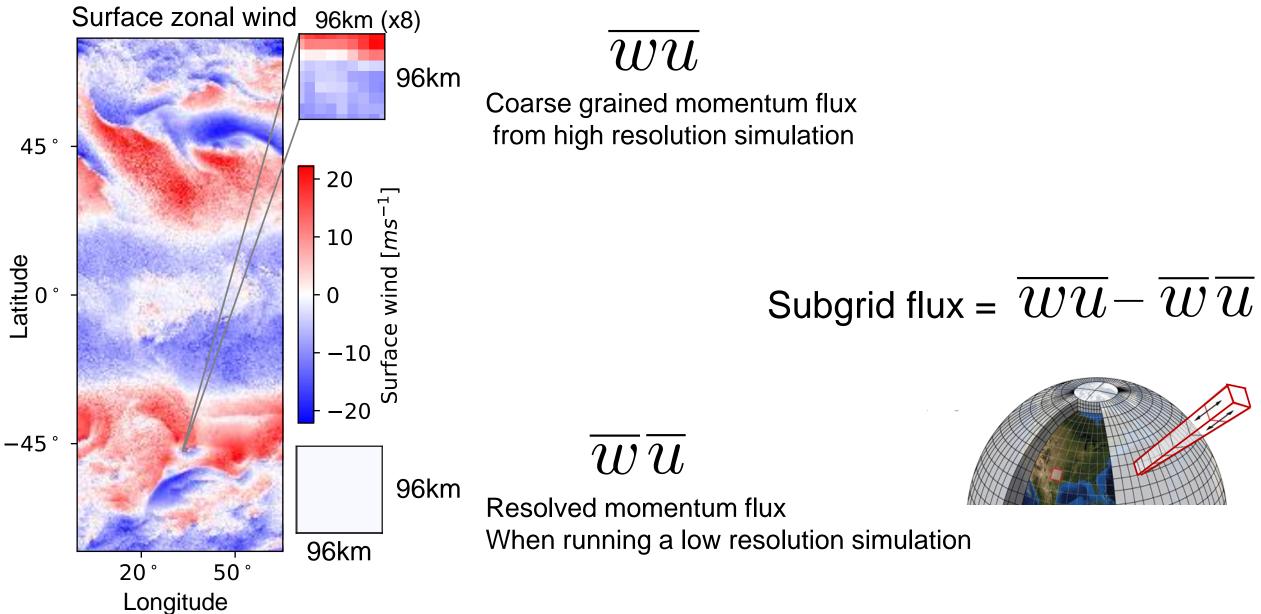












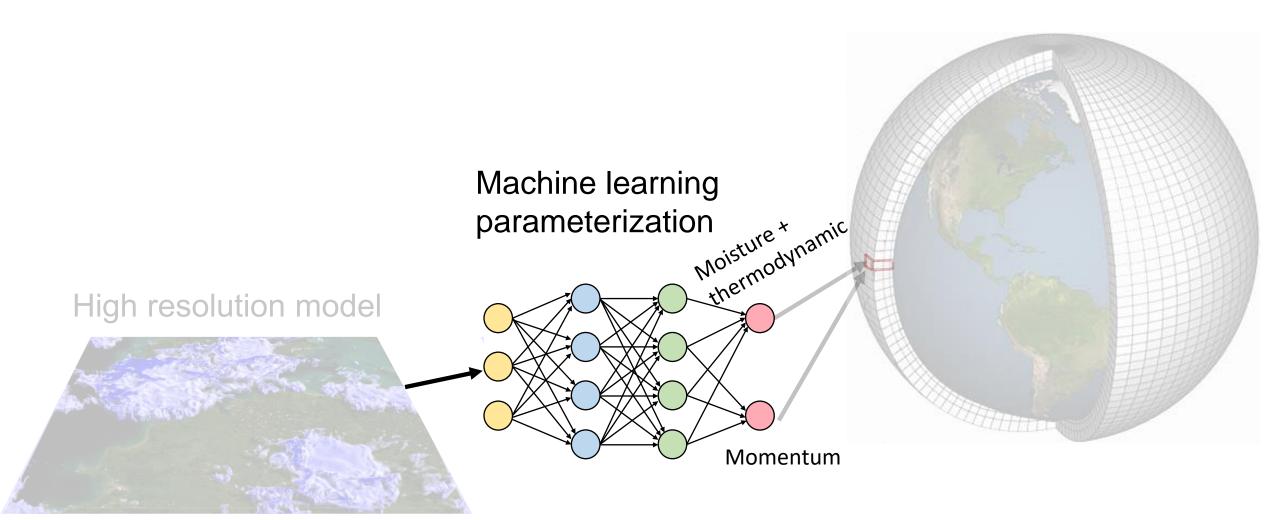
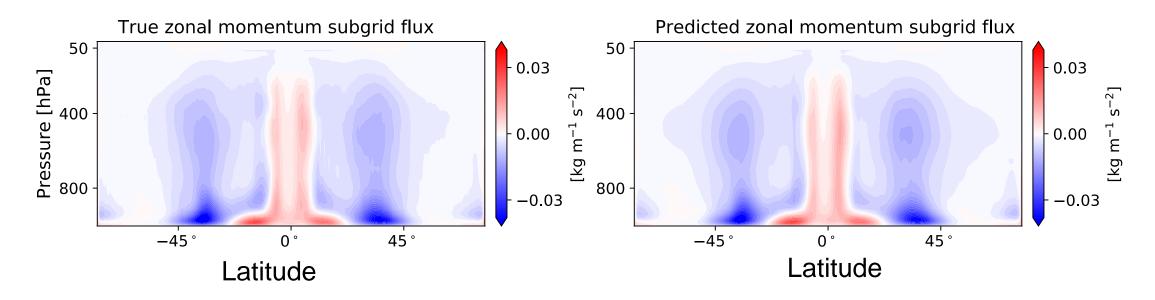


Figure credit: NOAA

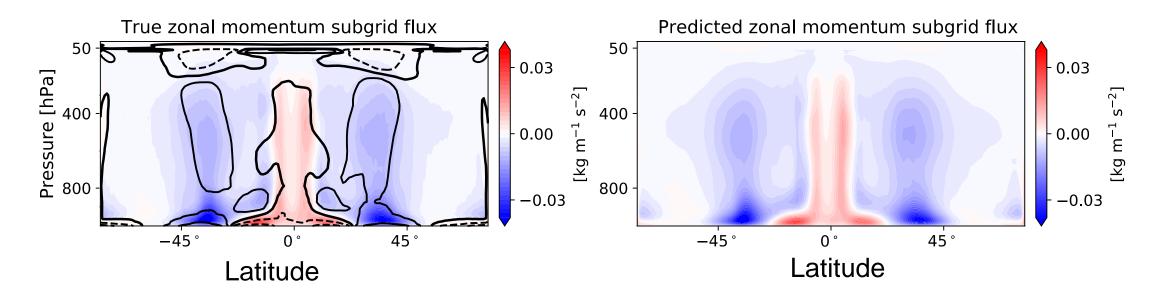
Mean subgrid momentum fluxes are downgradient and the neural network approximates well the mean fluxes

Offline results



Mean subgrid momentum fluxes are downgradient and the neural network approximates well the mean fluxes

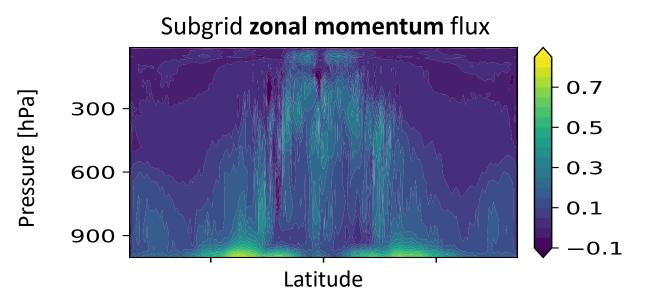
Offline results



Wind shear shown in contours

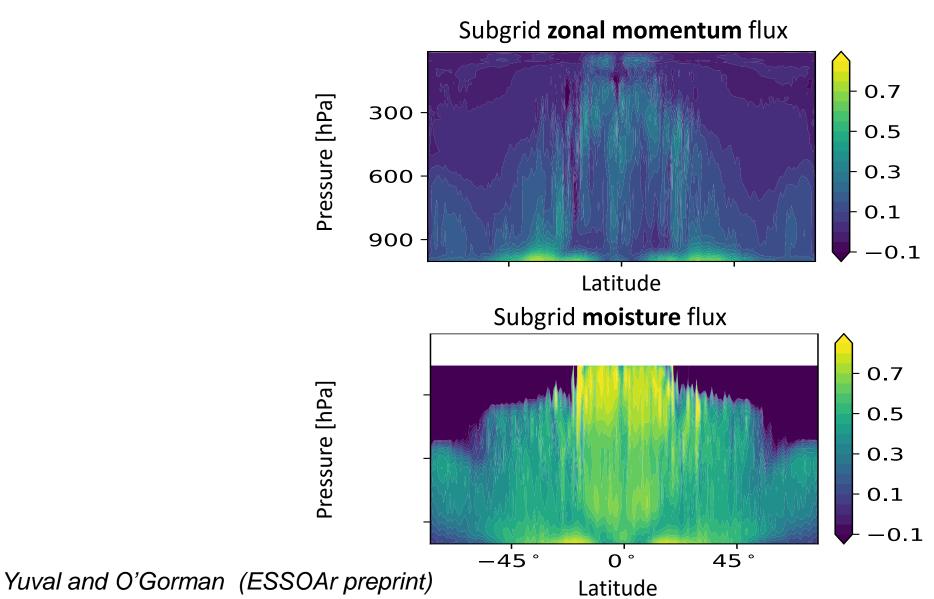
It is more difficult to predict subgrid momentum fluxes compared to subgrid moisture fluxes

Offline performance



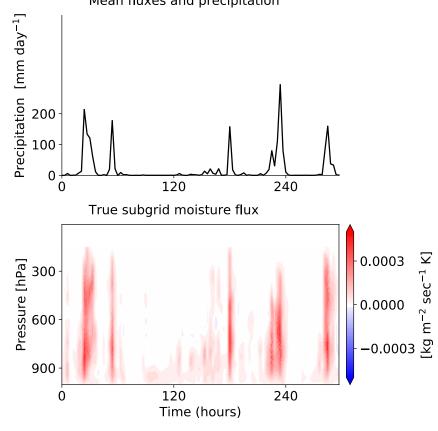
It is more difficult to predict subgrid momentum fluxes compared to subgrid moisture fluxes

Offline performance

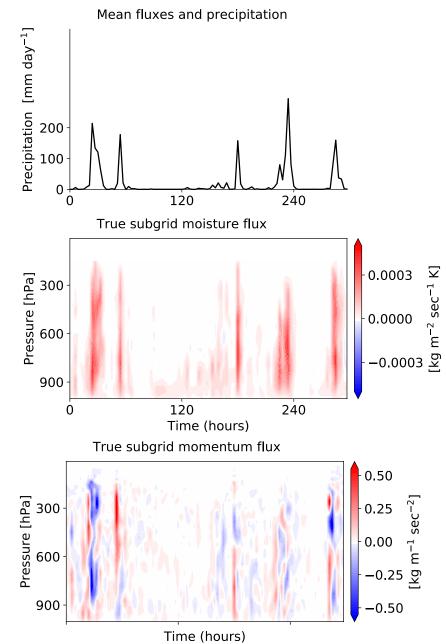


Why is it more difficult to predict subgrid momentum fluxes compared to moisture fluxes?

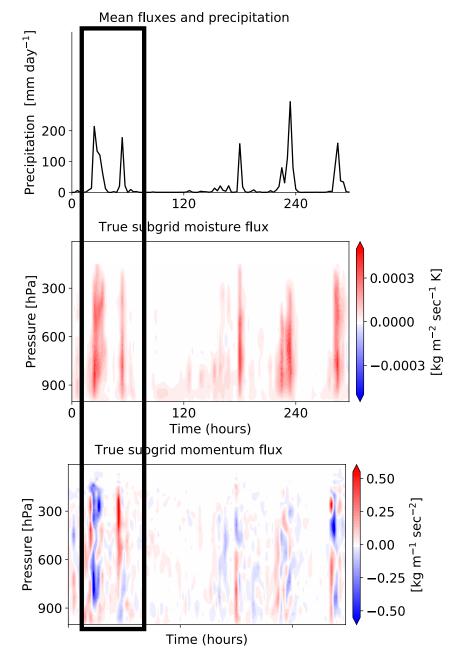
Mean fluxes and precipitation



moisture fluxes?



moisture fluxes?

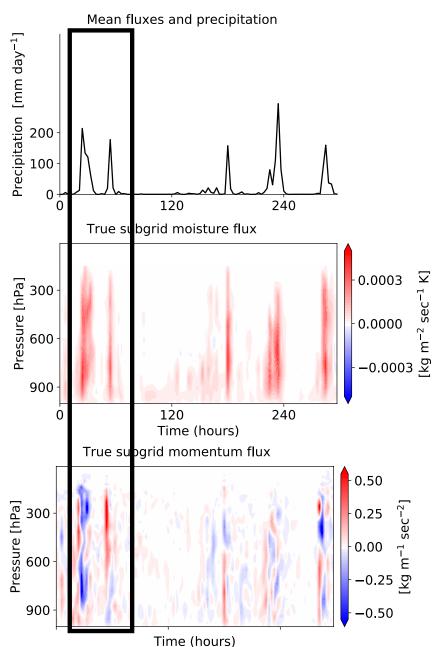


moisture fluxes?

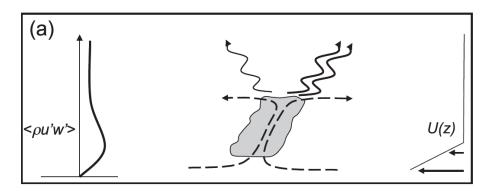


Lane and Moncrieff (2010)

Convective momentum transport can be negative or positive



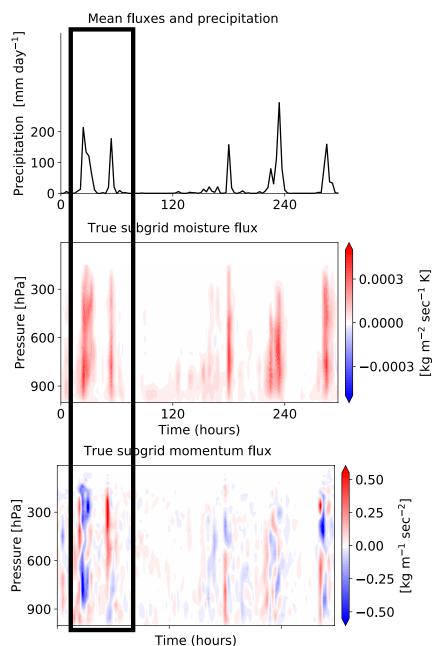
moisture fluxes?



Lane and Moncrieff (2010)

Convective momentum transport can be negative or positive

For (linear) gravity waves:
$$\frac{\overline{w'u'}}{\overline{w'\theta'}} \neq 0$$
$$\overline{w'\theta'} = 0$$



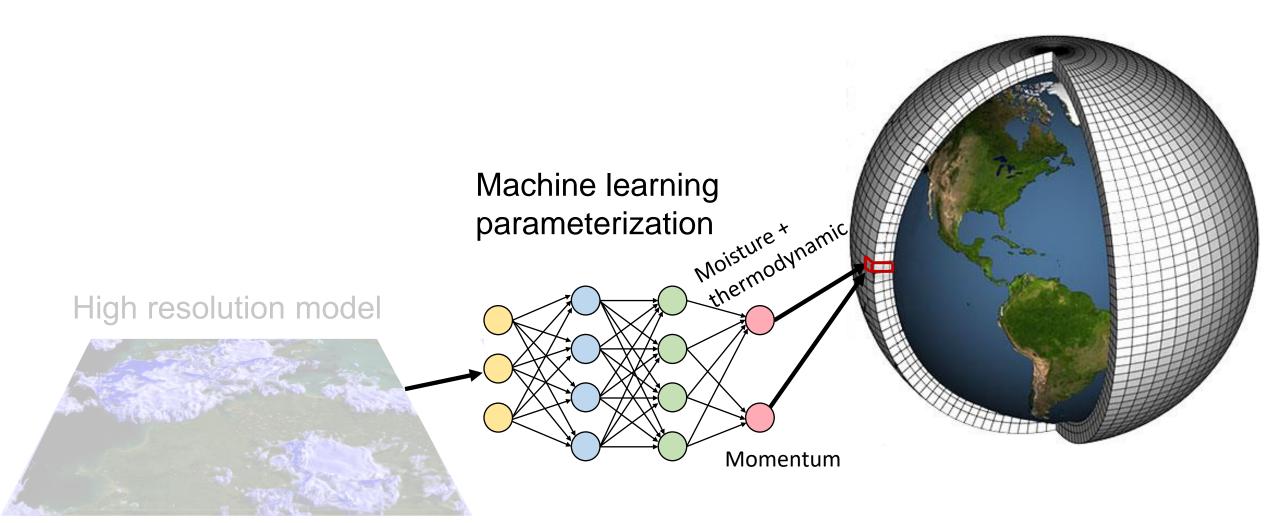
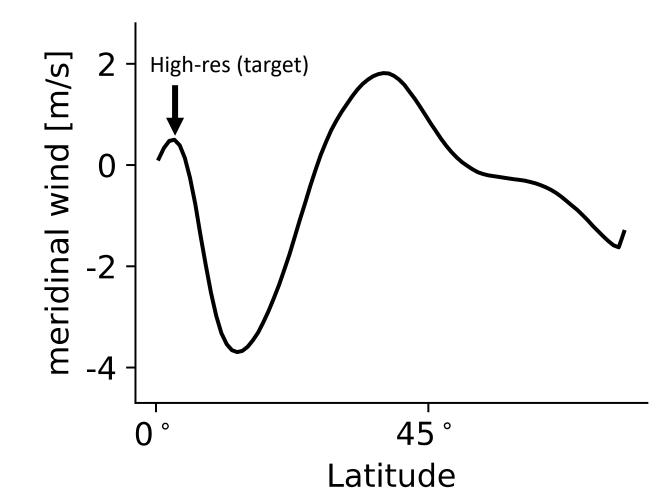


Figure credit: NOAA

Neural network parameterization of subgrid momentum transport improves some characteristics of the atmospheric circulation

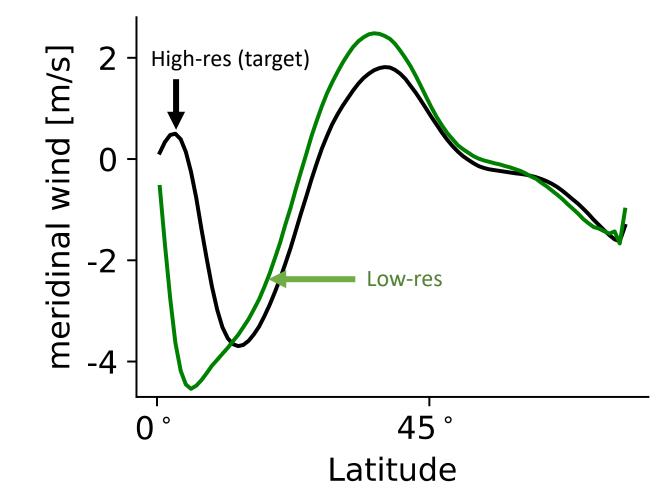
Surface meridional wind



CMT affects surface wind: e.g., Richter and Rasch (2007), Woelfle et al. (2018)

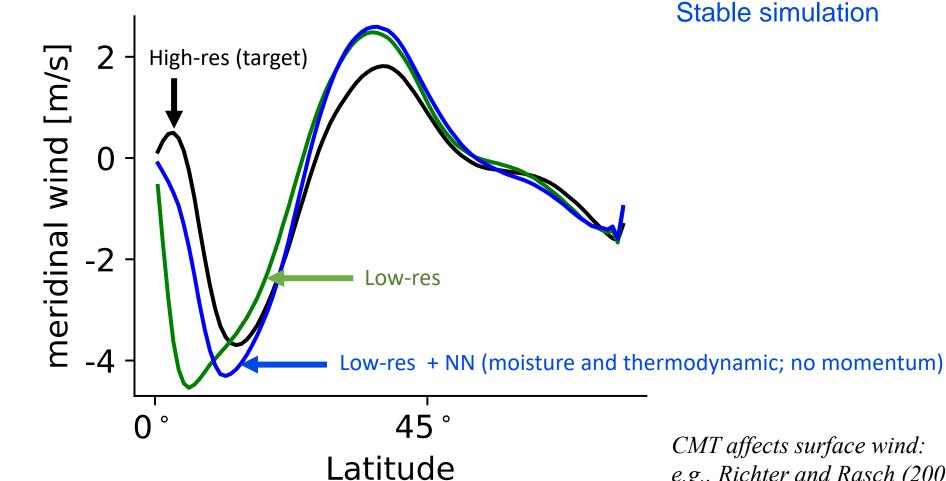
Neural network parameterization of subgrid momentum transport improves some characteristics of the atmospheric circulation

Surface meridional wind



CMT affects surface wind: e.g., Richter and Rasch (2007), Woelfle et al. (2018)

Neural network parameterization of subgrid momentum transport improves some characteristics of the atmospheric circulation

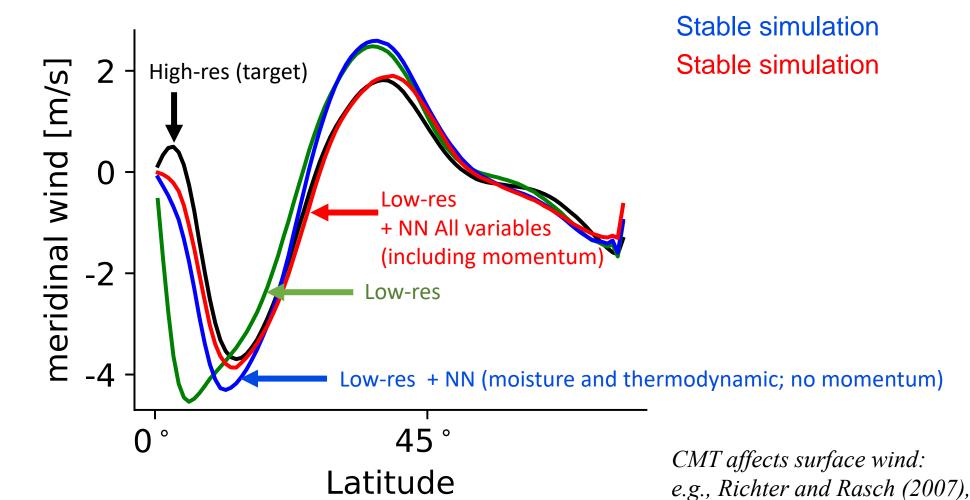


Yuval and O'Gorman (ESSOAr preprint)

e.g., Richter and Rasch (2007), Woelfle et al. (2018)

Neural network parameterization of subgrid momentum transport improves some characteristics of the atmospheric circulation

Surface meridional wind



Woelfle et al. (2018)

Yuval and O'Gorman (ESSOAr preprint)

Certain subgrid processes might be predicted better when using the 3D spatial structure of large scale fields

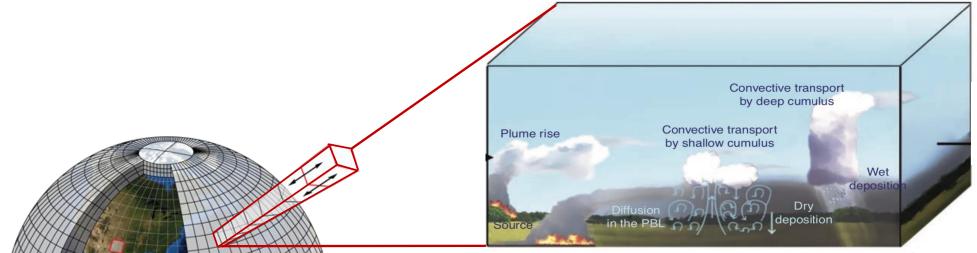


Figure credit: S. Freitas

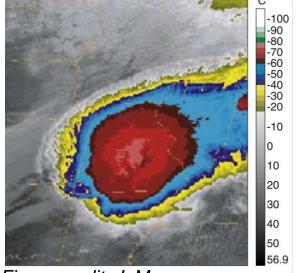


Figure credit: J. Moore

Certain subgrid processes might be predicted better when using the 3D spatial structure of large scale fields

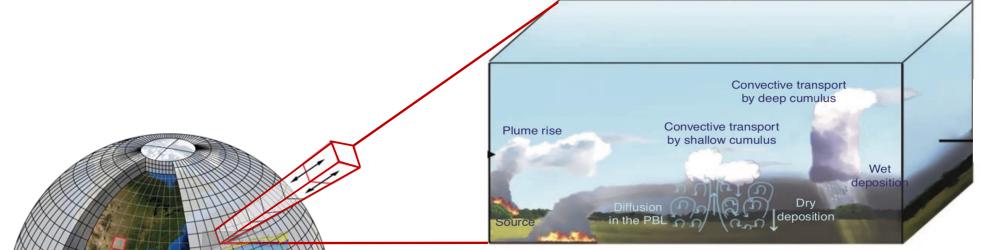


Figure credit: S. Freitas

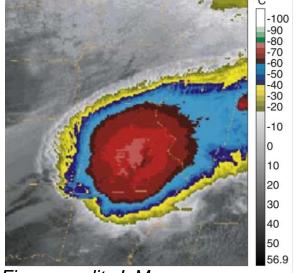
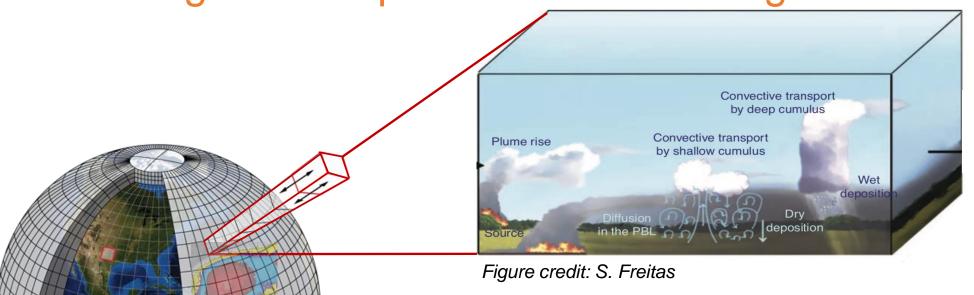


Figure credit: J. Moore

Certain subgrid processes might be predicted better when using the 3D spatial structure of large scale fields



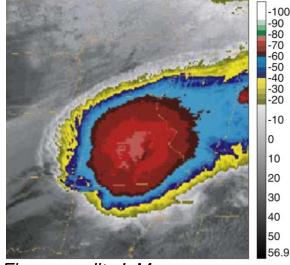
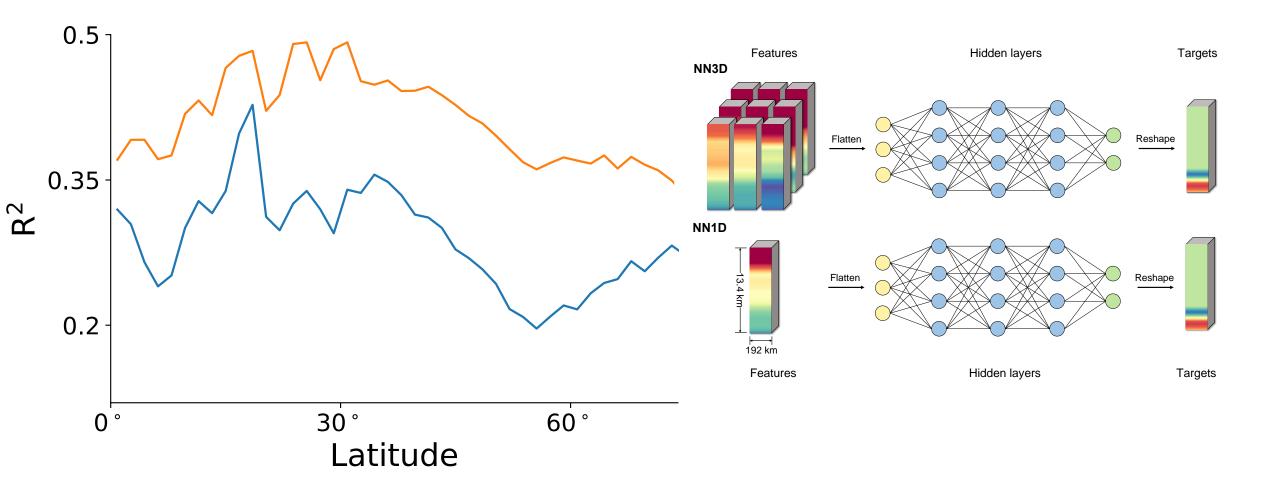


Figure credit: J. Moore

Non-local parameterization improves offline performance of the neural network parameterization



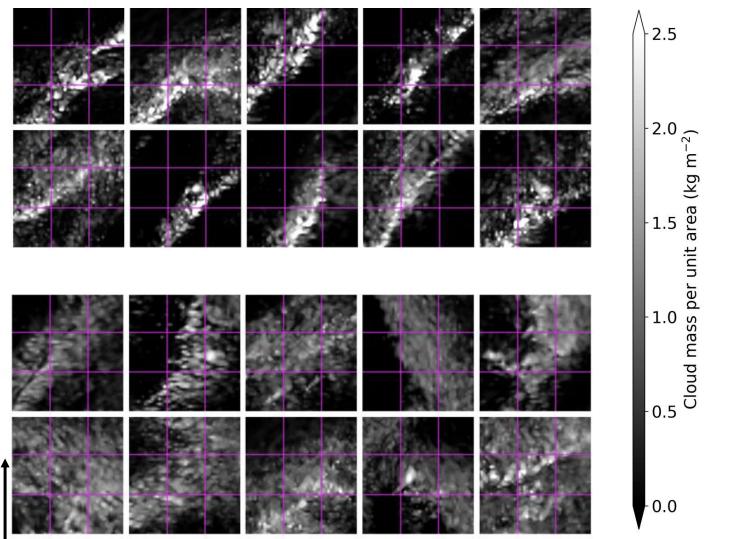
Non-local parameterization improves the prediction of subgrid processes in fronts

Improved:

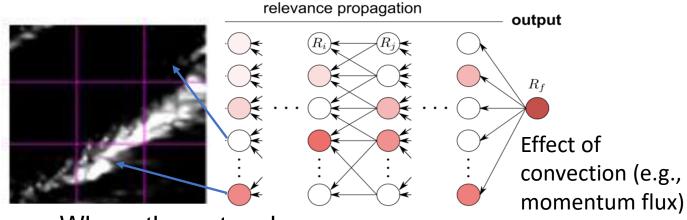
Not improved:

-atitude

Longitude



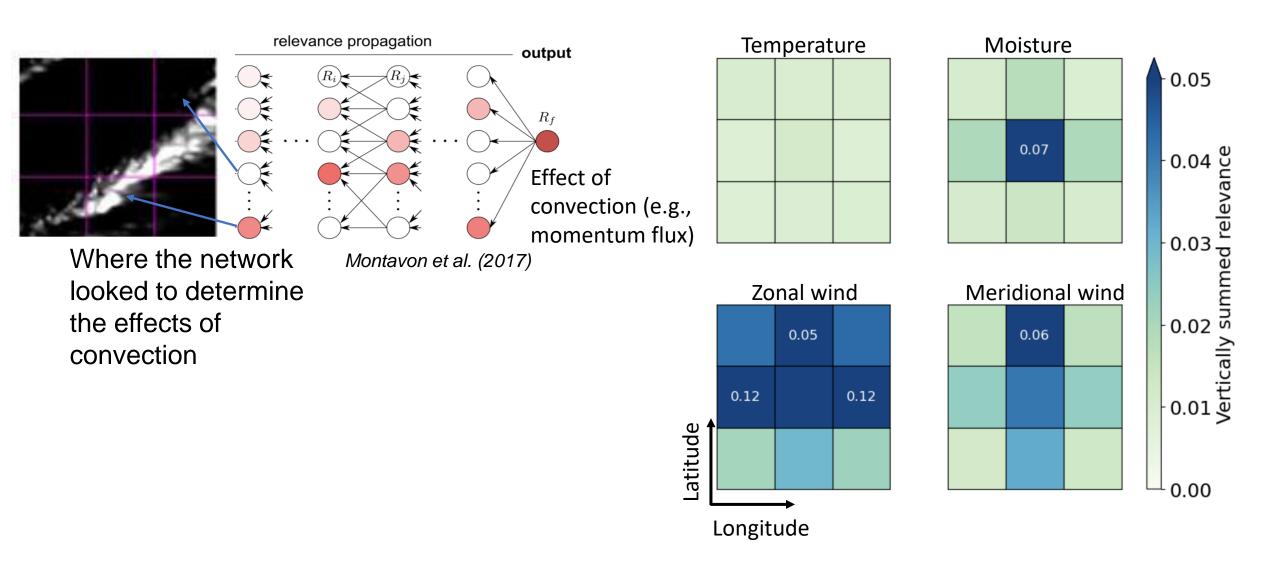
Non-local parameterization relies on non-local wind variables



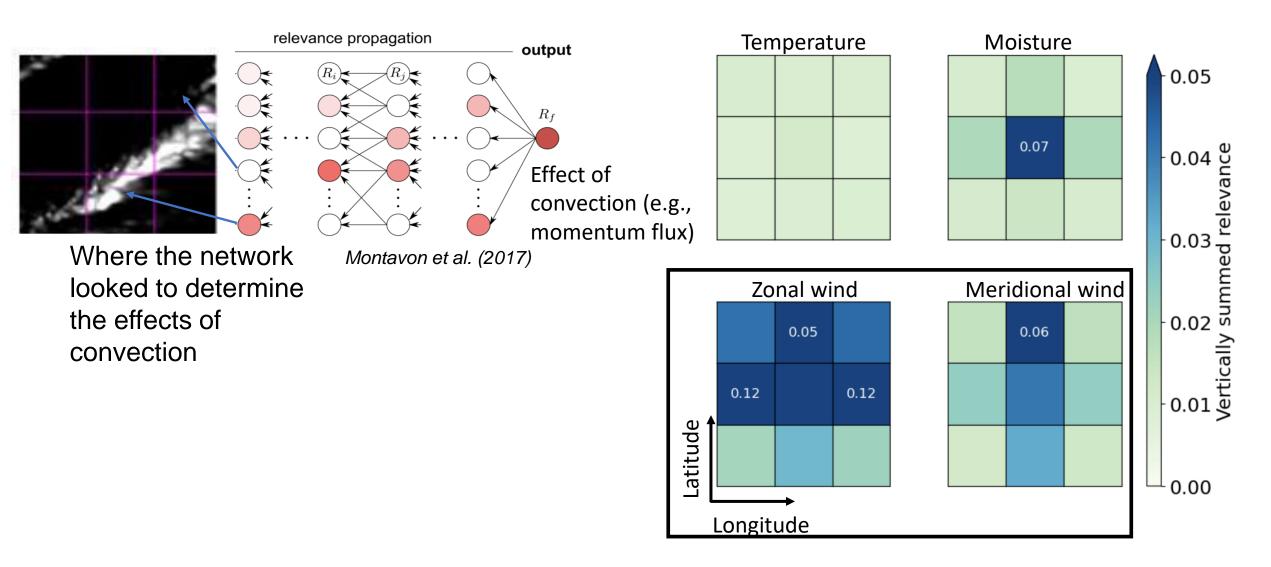
Where the network looked to determine the effects of convection

Montavon et al. (2017)

Non-local parameterization relies on non-local wind variables



Non-local parameterization relies on non-local wind variables



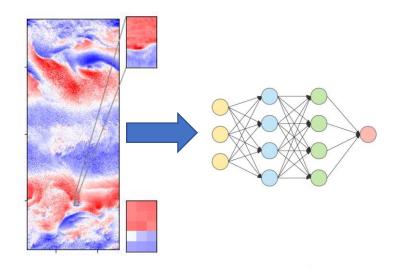
Wang, Yuval and O'Gorman (arXiv preprint)

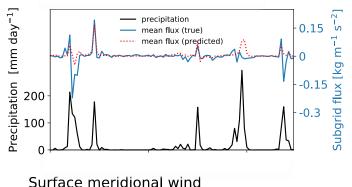
Conclusions

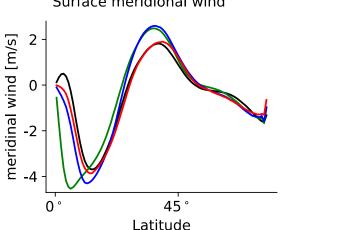
 Physically-consistent neural-network parameterization for subgrid momentum learned from fully 3-D high-resolution simulation

It is challenging to predict subgrid momentum fluxes

 Machine-learning momentum parameterization + atmospheric model at climate-model resolution -> stable simulation and improve some characteristics of the atmospheric circulation







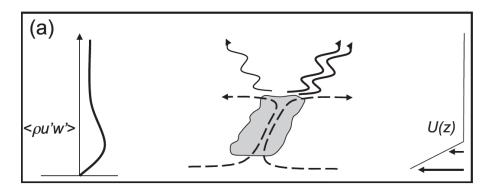
Why is it more difficult to predict subgrid momentum fluxes compared to

moisture fluxes?

Pressure [hPa]

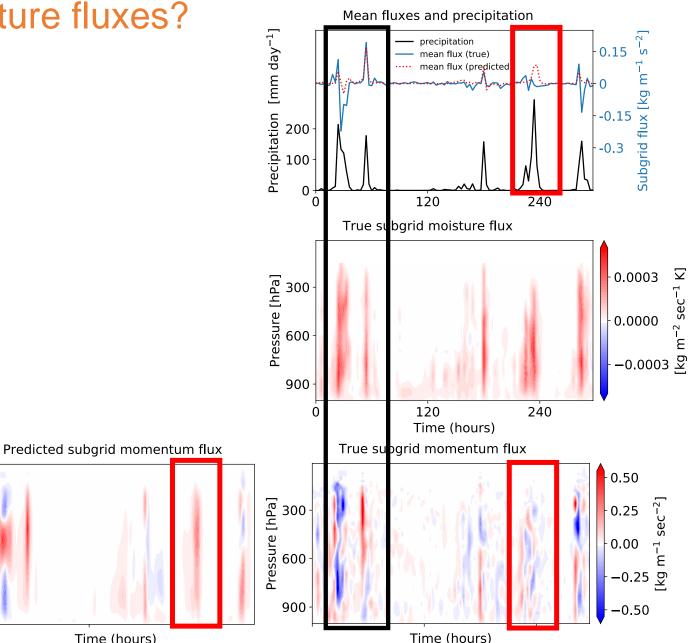
900

Time (hours)



Lane and Moncrieff (2010)

Convective momentum transport can be negative or positive

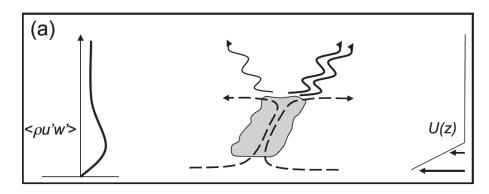


Why is it more difficult to predict subgrid momentum fluxes compared to

moisture fluxes?

Pressure [hPa]

900

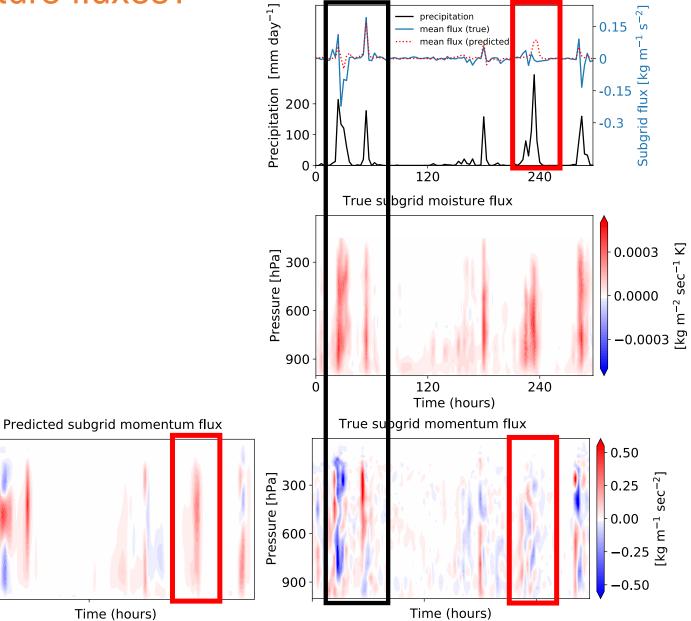


Lane and Moncrieff (2010)

Convective momentum transport can be negative or positive

For (linear) gravity waves:
$$\frac{\overline{w'u'}}{\overline{w'\theta'}} \neq 0$$

 $\frac{\overline{w'u'}}{\overline{w'\theta'}} = 0$



Mean fluxes and precipitation