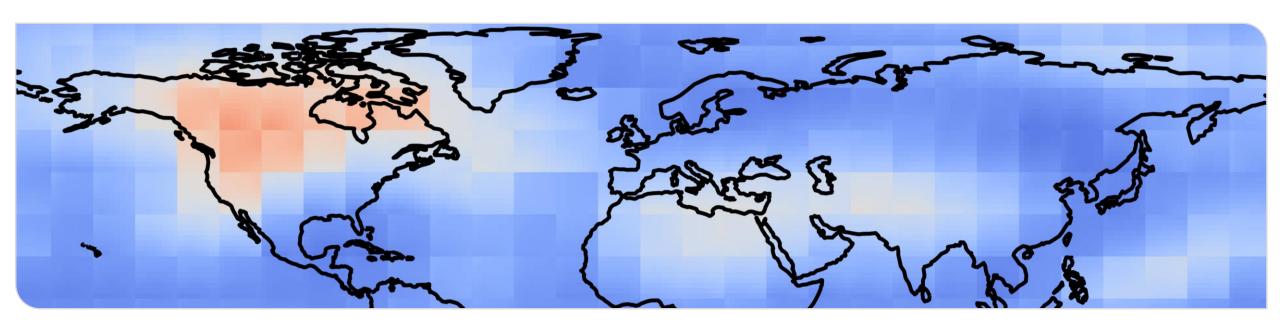
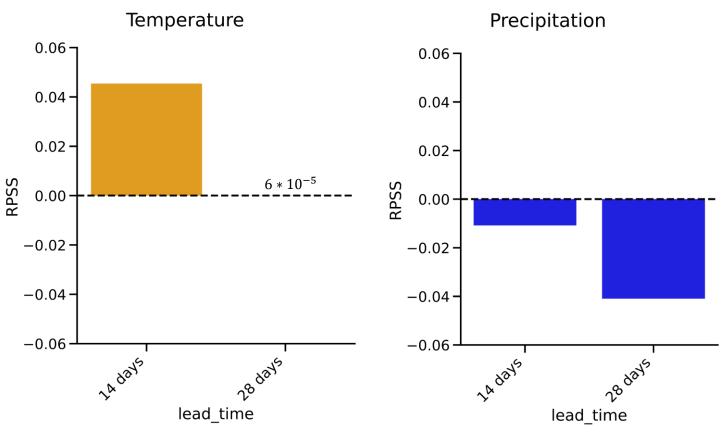


Machine Learning for global probabilistic prediction of temperature and precipitation on sub-seasonal time-scales

Nina Horat, Sebastian Lerch





Globally aggregated RPSS for all Thursday forecasts in 2020.

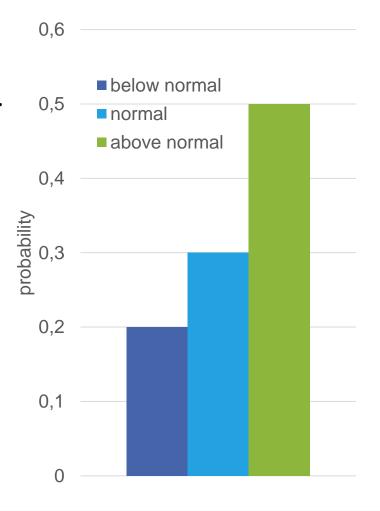
2

RPSS > 0: forecast is better than climatology (random guessing).

Challenge to improve Sub-seasonal to Seasonal Predictions using Artificial Intelligence (2021)

- Task:
 - Predict biweekly aggregates of temperature and precipitation for two lead times (3-4 & 5-6 weeks) for the year 2020 over land (globally)
- To beat:
 - extended-range probabilistic prediction of ECMWF (based on terciles)
 - random guessing climatology: [1/3, 1/3, 1/3]

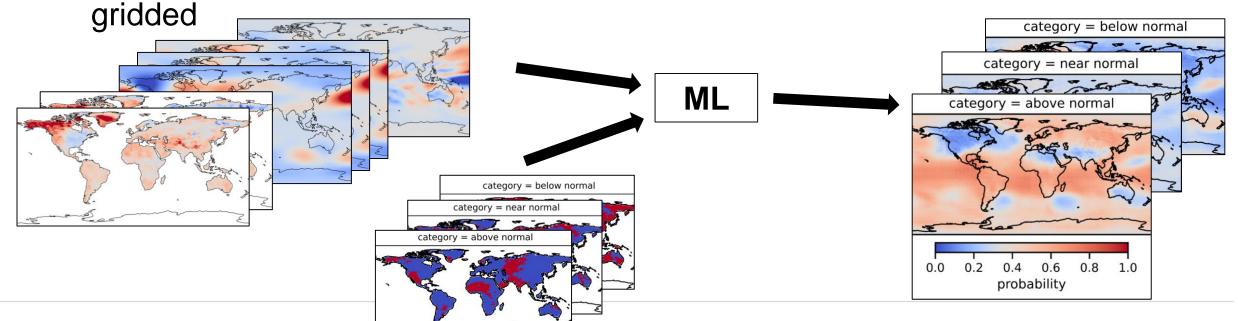
All information: https://s2s-ai-challenge.github.io/



Challenge to improve Sub-seasonal to Seasonal **Predictions using Artificial Intelligence**

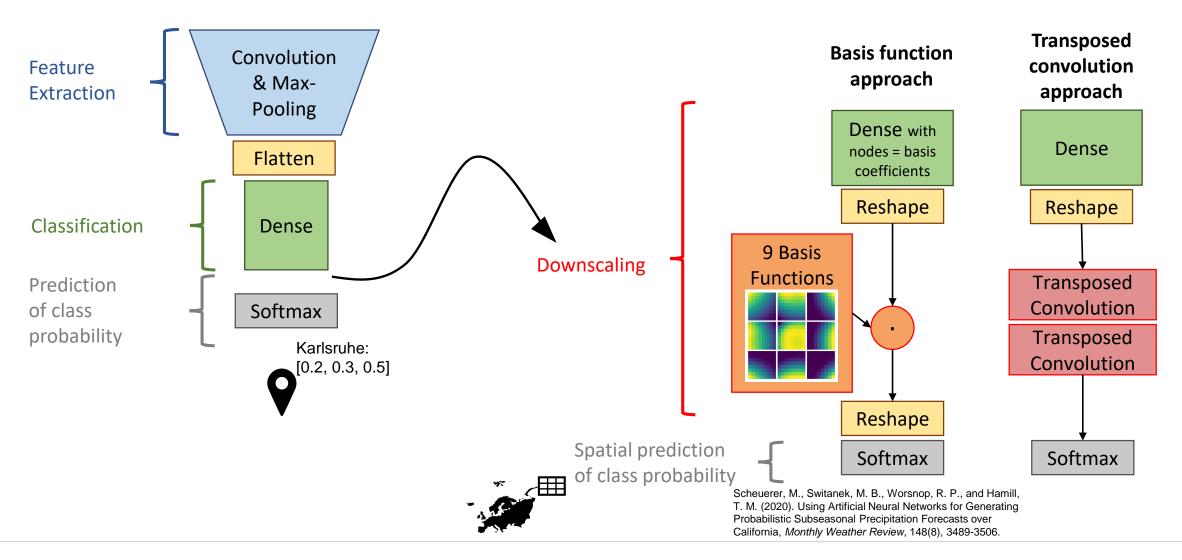
- Data (provided by the challenge):
 - S2S forecasts:
 - Train data: weekly ECMWF hindcasts for the years 2000-2019 (11 members)
 - Test data: weekly ECMWF forecasts for the year 2020 (51 members)

Observations: NOAA CPC temperature and total precipitation from IRIDL,

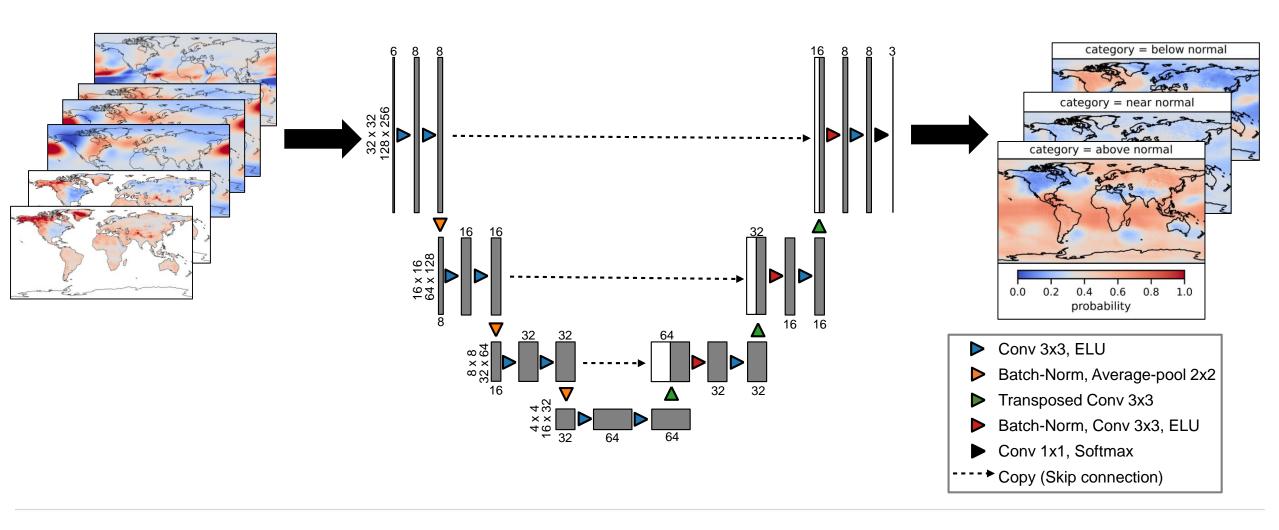


CNNs for spatial prediction

5



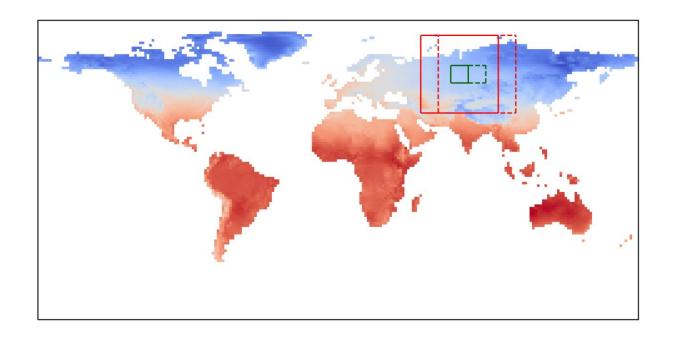
UNets



Method overview

- 4 different ML models:
 - CNN
 - with basis functions
 - with transposed convolutions
 - UNet
 - trained on patches
 - trained on global input

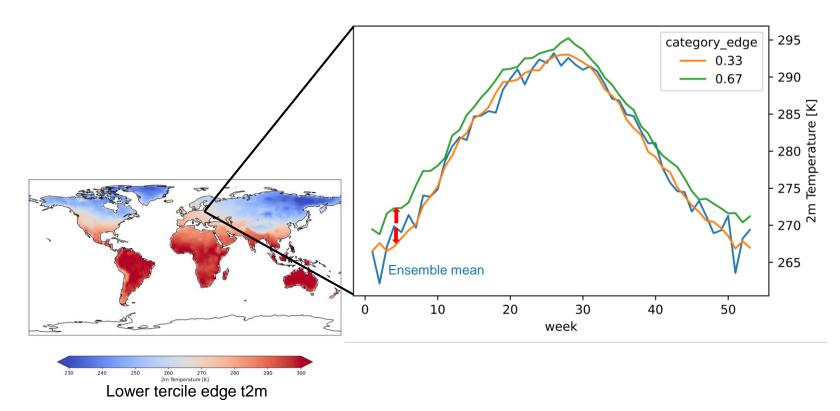
Patchwise training = data augmentation



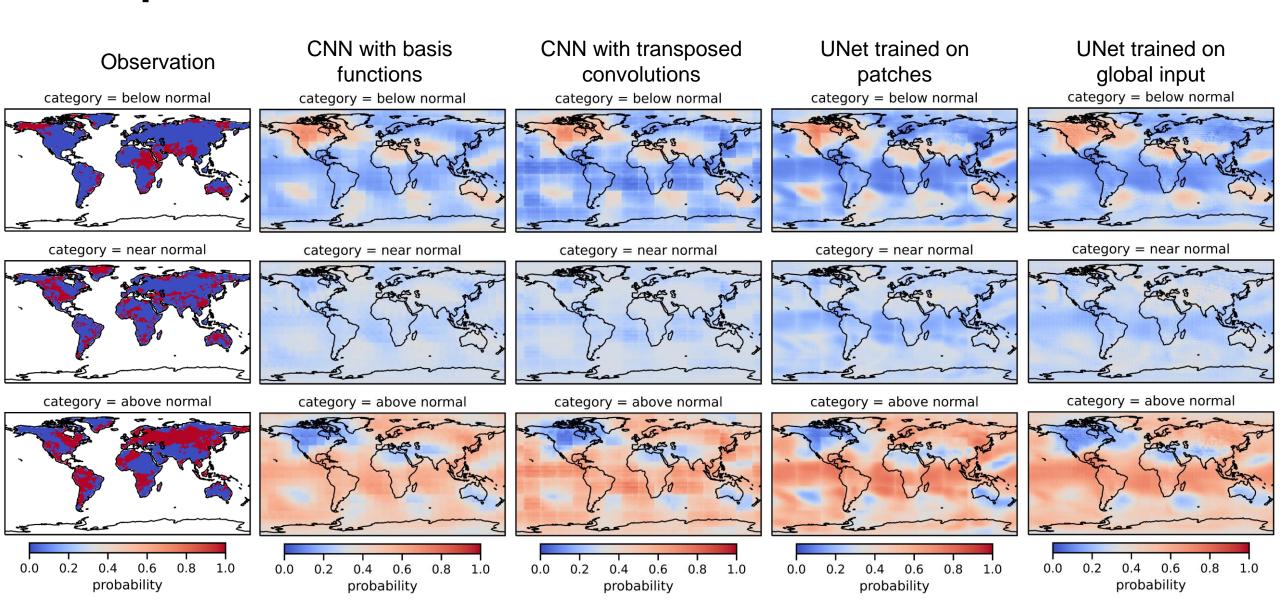
Feature Engineering

- Features:
 - Ensemble mean
 - For temperature:
 - t2m
 - **gh500**, gh850, msl
 - For precipitation:
 - tp
 - **gh500**, gh850, msl
 - tcw

Target variable features: distance to tercile edges

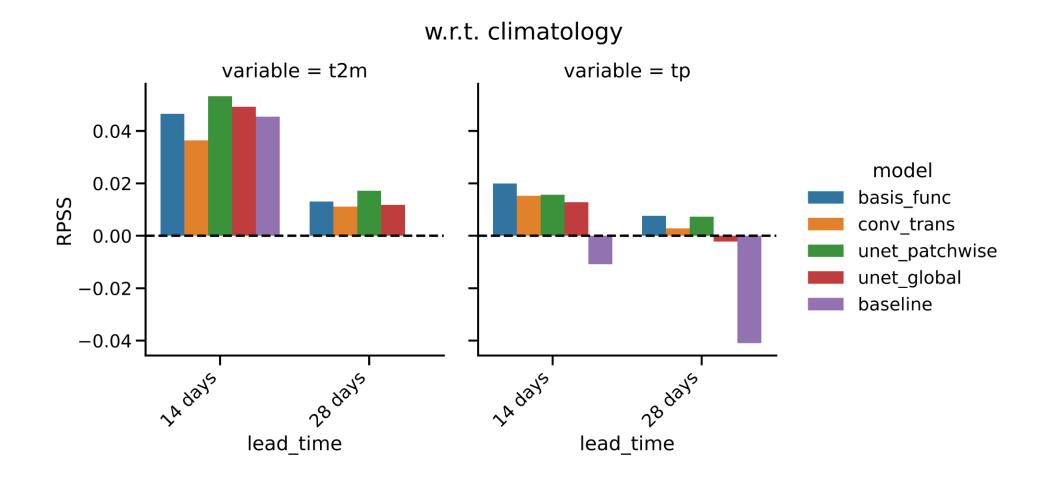


Temperature: lead time = 3 - 4 weeks



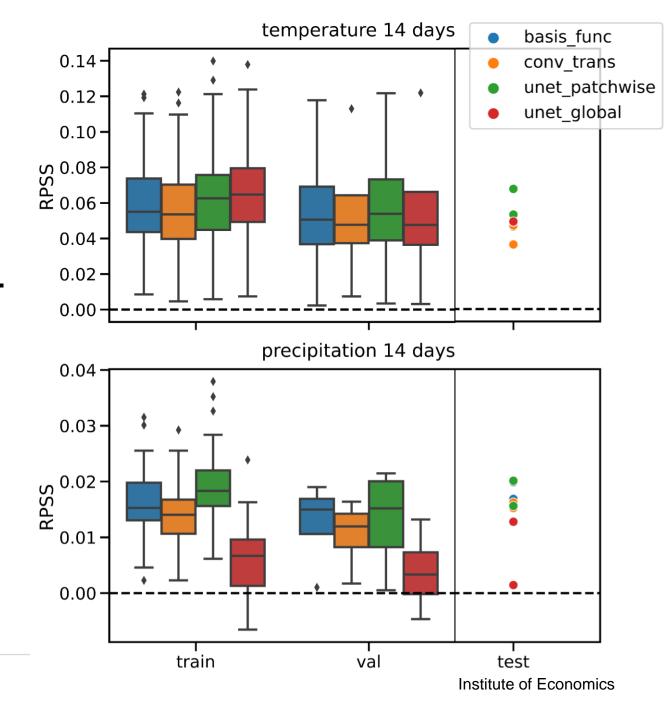
Performance on test data (2020):

10



How representative is the performance on the test data?

- No systematic differences between performance on training, validation and test data.
- No overfitting
- Performance on the test year 2020 is representative for the "true" performance



Summary and Outlook

- Development of new ML architectures specifically designed for correcting global forecasts
 - Exploit spatial information
 - Create spatial prediction
 - Patchwise training as data augmentation technique
- ML methods outperform the operational probabilistic extended-range forecasts of ECMWF
- Outlook:

12

- Include additional predictors
- Combine spatial input with timeseries input