Forecasting Global Weather with Graph Neural Networks

Ryan Keisler

My background

10 years in physics + cosmology (building things, data analysis, lots of stats)

7 years in industry

(satellite imagery, weather, physical & statistical models)

Quick look at main result

Main result: a new data-driven system for forecasting global weather

See bit.ly/graph_weather for more.

Motivation

Motivation

- Intellectual
- New opportunities
- Wouldn't it be cool if...

Motivation

- Intellectual
- New opportunities
- Wouldn't it be cool if...

for <\$1, I could run a high-quality, global weather forecast with an object that is

- easy to share (some code + 20 MB weights)
- easy to modify (fine-tune for specific applications)
- easy to inspect (autodiff)
- easy to glue (python)

Warming up

Before tackling weather, let's try a toy problem.

Before tackling weather, let's try a toy problem.

Let's learn chaotic dynamics on the sphere.

Learning chaotic dynamics on the sphere

Learning Kuramoto-Sivashinsky with jraph + haiku

Learning Global Weather

Design Philosophy

Traditional NWP works really well so let's:

- model the variables that drive traditional NWP (z, t, q, u, v, w)
- model on a dense physical grid (whatever \$ and GPU allow)
- pick an architecture that enables this (~MeshGraphNet)
- pick a dataset that enables this (ERA5)

ERA5

In my opinion, an incredible, under-appreciated scientific achievement!

In this work, I used a 2 TB subset of ERA5:

- Horizontal resolution: 1.0 degrees in lat/lon
- Vertical resolution: 13 pressure levels
- Time: every 3 hours, from 1979 through 2020
- Fields: 6 fields (z, q, t, u, v, w)

Data stored as a single zarr array.

Spectrum of weather training data

Observations

(e.g. weather sat data)

"Pure" data, no physical modeling imposed

Reanalysis data

(e.g. ERA5)

A blend of observational data & physical modeling

Forecast data

(e.g. GFS or ECMWF IFS)

"Pure" physical model

Spectrum of weather training data

Observations

(e.g. weather sat data)

"Pure" data, no physical modeling imposed

Reanalysis data

(e.g. ERA5)

A blend of observational data & physical modeling

Forecast data

(e.g. GFS or ECMWF IFS)

"Pure" physical model

Best-case ML scenario

You outperform NWP!

Best-case ML scenario

?

Best-case ML scenario

You perfectly emulate (but don't outperform) the NWP engine

Architecture

"Learning Mesh-Based Simulation with Graph Networks"

by Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia arXiv:2010.03409

GNNs are well suited to NWP

- Easy to handle the spherical geometry of earth
 - Just nodes in 3d space
- Potential for multi-resolution models
 - e.g. learn from GFS and HRRR?
- Potential for adaptive meshing
 - i.e. put the compute where it is needed

Counting bits

25 MB

Model weights

Counting bits

Counting bits

But do you need it?

Results

6-hour Differences

3-day Rollout

1-year rollout

1-year rollout (final frame)

Anticipating GFS

Improves upon previous data-driven approaches

Comparable to Operational NWP

...when high-res op models are evaluated at ~1-deg scale

...when using reanalysis initial conditions

...but still, it works surprisingly well!

Thank you