

Causal DL models for studying relations in the Earth system Impact of soil moisture changes on precipitation

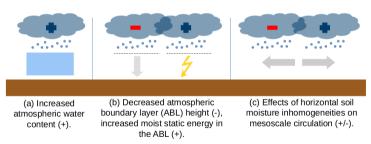
ECMWF ML Workshop 2022 | Tobias Tesch, Stefan Kollet, Jochen Garcke | IBG-3, Forschungszentrum Jülich

Many processes and relations between variables in the Earth system are still poorly understood.

Many processes and relations between variables in the Earth system are still poorly understood.

Example: Impact of increased soil moisture on precipitation.

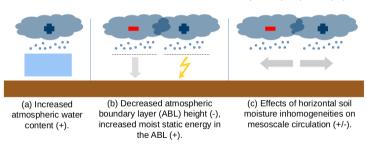
Different effects of soil moisture increases and their impact on precipitation (+/-).



Many processes and relations between variables in the Earth system are still poorly understood.

Example: Impact of increased soil moisture on precipitation.

Different effects of soil moisture increases and their impact on precipitation (+/-).



⇒ Better understanding might improve precipitation prediction with numerical models.

Slide 1

Limitations of current approaches for studying relations in the Earth system:

Limitations of current approaches for studying relations in the Earth system:

- Approaches based on numerical simulations:
 - high computational costs,
 - rely on correct representation of considered relations in the numerical model.

Limitations of current approaches for studying relations in the Earth system:

- Approaches based on numerical simulations:
 - high computational costs,
 - rely on correct representation of considered relations in the numerical model.
- Current statistical approaches:
 - strong assumptions, e.g. linearity and locality of relations,
 - ignore discrepancy between correlation and causation.

Limitations of current approaches for studying relations in the Earth system:

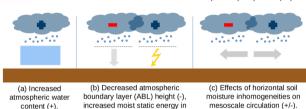
- Approaches based on numerical simulations:
 - high computational costs,
 - rely on correct representation of considered relations in the numerical model.
- Current statistical approaches:
 - strong assumptions, e.g. linearity and locality of relations,
 - ignore discrepancy between correlation and causation.

Combining DL and causality research, we can overcome these limitations!

Method

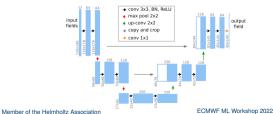
1 - Given a complex relation between two variables, ...

Different effects of soil moisture increases and their impact on precipitation (+/-).

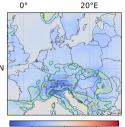


the ABL (+).

2 - ... we train a causal deep learning model to predict one variable given the other, ...



3 - ... and perform a sensitivity analysis of the trained 50°N model.



0.0

0.3

What is meant by the *causal impact* of some variable $X \in \mathbb{R}^d$ on another variable $Y \in \mathbb{R}^n$?

It is the (expected) response of Y to intervening into the considered system and changing the value of X.

- It is the (expected) response of Y to intervening into the considered system and changing the value of X.
- We need to determine the expected value of Y given that one intervened into the system and set X to some value x, referred to by $\mathbb{E}[Y|do(X=x]]$.

- It is the (expected) response of Y to intervening into the considered system and changing the value of X.
- We need to determine the expected value of Y given that one intervened into the system and set X to some value x, referred to by $\mathbb{E}[Y|do(X=x]]$.
- In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

- It is the (expected) response of Y to intervening into the considered system and changing the value of X.
- We need to determine the expected value of Y given that one intervened into the system and set X to some value x, referred to by $\mathbb{E}[Y|do(X=x]]$.
- In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

Example: X - soil moisture[t], Y - precipitation[t + 3 h].

In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

Example: X - soil moisture[t], Y - precipitation[t + 3 h].

In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

Example: X - soil moisture[t], Y - precipitation[t + 3 h].

Increased soil moisture[t]

 \Rightarrow likely increased recent precipitation

In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

Example: X - soil moisture[t], Y - precipitation[t + 3 h].

- ⇒ likely increased recent precipitation
- \Rightarrow likely increased precipitation[t + 3 h] (precipitation persistence).

In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

Example: X - soil moisture[t], Y - precipitation[t + 3 h].

- ⇒ likely increased recent precipitation
- \Rightarrow likely increased precipitation[t + 3 h] (precipitation persistence).
- The right expectation contains this confounding effect.

In general, it holds $\mathbb{E}[Y|do(X=x)] \neq \mathbb{E}[Y|X=x]$.

Example: X - soil moisture[t], Y - precipitation[t + 3 h].

- ⇒ likely increased recent precipitation
- \Rightarrow likely increased precipitation[t + 3 h] (precipitation persistence).
- The right expectation contains this confounding effect.
- The left expectation does not, because the do-operator represents an intervention into the system that breaks the link between soil moisture and recent precipitation.

Given a target variable $Y \in \mathbb{R}^n$, input variables $X \in \mathbb{R}^d$ and $\{C_i\}_{i=1}^k \in \mathbb{R}^{d_i}$, and a suitable loss function, a DL model approximates the map

$$(x, \{c_i\}_{i=1}^k) \to \mathbb{E}[Y|X=x, \{C_i=c_i\}_{i=1}^k].$$

Given a target variable $Y \in \mathbb{R}^n$, input variables $X \in \mathbb{R}^d$ and $\{C_i\}_{i=1}^k \in \mathbb{R}^{d_i}$, and a suitable loss function, a DL model approximates the map

$$(x, \{c_i\}_{i=1}^k) \to \mathbb{E}[Y|X=x, \{C_i=c_i\}_{i=1}^k].$$

We call a DL model causal, if it approximates the map

$$(x,\{c_i\}_{i=1}^k) o \mathbb{E}[Y| \mathbf{do}(X=x)], \{C_i=c_i\}_{i=1}^k].$$

Given a target variable $Y \in \mathbb{R}^n$, input variables $X \in \mathbb{R}^d$ and $\{C_i\}_{i=1}^k \in \mathbb{R}^{d_i}$, and a suitable loss function, a DL model approximates the map

$$(x, \{c_i\}_{i=1}^k) \to \mathbb{E}[Y|X=x, \{C_i=c_i\}_{i=1}^k].$$

We call a DL model causal, if it approximates the map

$$(x,\{c_i\}_{i=1}^k) o \mathbb{E}[Y| \operatorname{\mathsf{do}}(X=x)], \{C_i=c_i\}_{i=1}^k].$$

We can obtain a causal DL model by choosing suitable additional input variables C_i , because then it holds

$$\mathbb{E}[Y|do(X=X), \{C_i=c_i\}_{i=1}^k] = \mathbb{E}[Y|X=X, \{C_i=c_i\}_{i=1}^k].$$

Theorem

Pearl¹: "For multivalued variables X and Y, finding a sufficient set S of multivalued variables $C_i \in \mathbb{R}^{d_i}$, i = 1, ..., k, permits us to write

$$\mathbb{E}[Y|do(X=x), \{C_i = c_i\}_{i=1}^k] = \mathbb{E}[Y|X=x, \{C_i = c_i\}_{i=1}^k].$$
 (1)

Sufficient set:

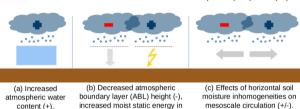
- "no element of S is a descendant of X",
- "the elements of S block all back-door paths from X to Y, namely all paths that end with an arrow pointing to X".

[1] Pearl, J. "Causal inference in statistics: An overview." Statist. Surv. 3, 96, 2009.

Method

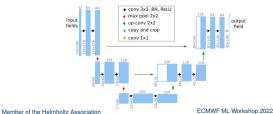
1 - Given a complex relation between two variables, ...

Different effects of soil moisture increases and their impact on precipitation (+/-).

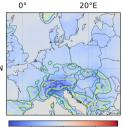


the ABL (+).

2 - ... we train a causal deep learning model to predict one variable given the other, ...



3 - ... and perform a sensitivity analysis of the trained 50°N model.



• From step 2, we have a causal DL model, i.e. a DL model that approximates the map

$$(x, \{c_i\}_{i=1}^k) \to \mathbb{E}[Y|do(X=x), \{C_i=c_i\}_{i=1}^k].$$

• From step 2, we have a causal DL model, i.e. a DL model that approximates the map

$$(x, \{c_i\}_{i=1}^k) \to \mathbb{E}[Y|do(X=x), \{C_i=c_i\}_{i=1}^k].$$

■ To determine the causal impact of $X \in \mathbb{R}^d$ on $Y \in \mathbb{R}^n$, we consider the partial derivatives

$$s_{i_1i_2} = \frac{\partial \mathbb{E}[Y_{i_1}|do(X=x), \{C_i = c_i\}_{i=1}^k]}{\partial X_{i_2}}, \text{ for } i_1 \in \{1, \dots, n\}, i_2 \in \{1, \dots, d\}.$$

From step 2, we have a causal DL model, i.e. a DL model that approximates the map

$$(x, \{c_i\}_{i=1}^k) \to \mathbb{E}[Y|do(X=x), \{C_i=c_i\}_{i=1}^k].$$

■ To determine the causal impact of $X \in \mathbb{R}^d$ on $Y \in \mathbb{R}^n$, we consider the partial derivatives

$$s_{i_1i_2} = \frac{\partial \mathbb{E}[Y_{i_1}|do(X=x), \{C_i = c_i\}_{i=1}^k]}{\partial X_{i_2}}, \text{ for } i_1 \in \{1, \dots, n\}, i_2 \in \{1, \dots, d\}.$$

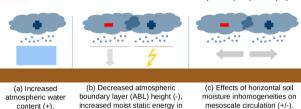
■ To answer how Y_{i_1} changes on average if we intervened into the system and changed X_{i_2} , we consider the expected value of $s_{i_1i_2}$ w.r.t. the joint distribution of X and $\{C_i\}_{i=1}^k$

$$\overline{s_{i_1i_2}} = \mathbb{E}_{x,\{c_i\}_{i=1}^k}[s_{i_1i_2}] = \mathbb{E}_{x,\{c_i\}_{i=1}^k} \left[\frac{\partial \mathbb{E}[Y_{i_1}|do(X=x),\{C_i=c_i\}_{i=1}^k]}{\partial X_{i_2}} \right].$$

Method

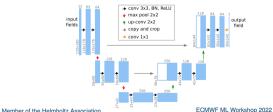
1 - Given a complex relation between two variables, ...

Different effects of soil moisture increases and their impact on precipitation (+/-).

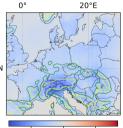


the ABL (+).

2 - ... we train a causal deep learning model to predict one variable given the other, ...



3 - ... and perform a sensitivity analysis of the trained 50°N model.



0.0

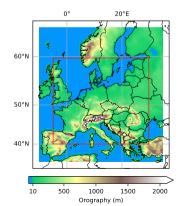
0.3

Train a causal DL model to predict one variable given the other

Given soil moisture[t] and further variables[t], which approximate a sufficient set, at the 120x180 pixels in the input region,

predict precipitation[t+3 h] at the 80x140 pixels in the target region (red box).

Data: ERA5. Summer months (JJA). Target variable between 11 am and 11 pm UTC.

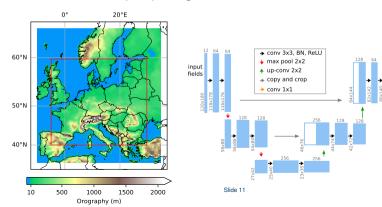


Train a causal DL model to predict one variable given the other

Given soil moisture[t] and further variables[t], which approximate a sufficient set, at the 120x180 pixels in the input region,

predict precipitation[t+3 h] at the 80x140 pixels in the target region (red box).

Data: ERA5. Summer months (JJA). Target variable between 11 am and 11 pm UTC.



output

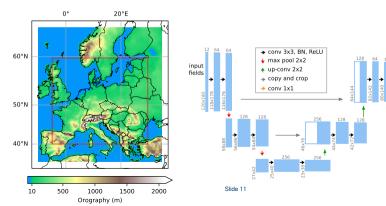
field

Train a causal DL model to predict one variable given the other

Given soil moisture[t] and further variables[t], which approximate a sufficient set, at the 120x180 pixels in the input region,

predict precipitation[t+3 h] at the 80x140 pixels in the target region (red box).

Data: ERA5. Summer months (JJA). Target variable between 11 am and 11 pm UTC.



output

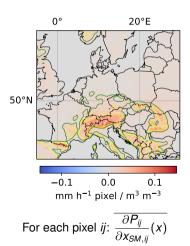
field

Impact of an increase in local soil moisture on local (left) and regional (right) precipitation.

50°N

٥°

20°E



mm h^{-1} pixel / m^3 m^{-3} For each pixel ij: $\frac{\partial \sum_{nk} P_{nk}}{\partial x_{SM}}(x)$

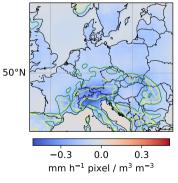
0.0

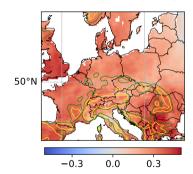
0.3

-0.3

Comparison to linear correlation

Left: impact of an increase in local soil moisture on regional precipitation (our method). Right: linear correlation between local soil moisture and regional precipitation.

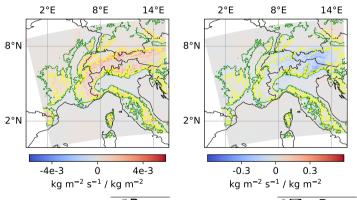




For each pixel ij: $\frac{\partial \sum_{nk} P_{nk}}{\partial Y_{nk}}(x)$ For each pixel ij: $corr_t(SM_{ij}, \sum_{nk} P_{nk})$

Data from convection-permitting simulations

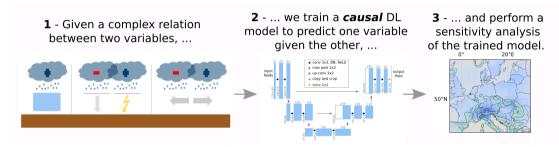
Impact of an increase in local soil moisture on local (left) and regional (right) precipitation.



For each pixel ij: $\frac{\partial P_{ij}}{\partial x_{SM,ij}}(x)$ For each pixel ij: $\frac{\partial \sum_{nk} P_{nk}}{\partial x_{SM,ij}}(x)$

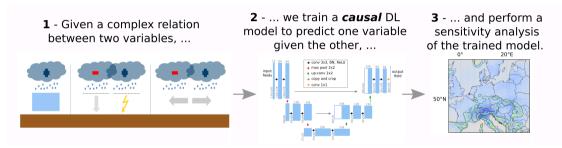
Summary & take home message

Causal DL for studying relations in the Earth system: impact of soil moisture changes on precipitation.



Summary & take home message

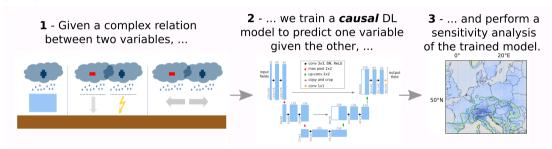
Causal DL for studying relations in the Earth system: impact of soil moisture changes on precipitation.



⇒ **Take home message:** Deep learning is a powerful tool for gaining scientific insights into the Earth system.

Summary & take home message

Causal DL for studying relations in the Earth system: impact of soil moisture changes on precipitation.



⇒ **Take home message:** Deep learning is a powerful tool for gaining scientific insights into the Earth system.

Get in touch: t.tesch@fz-juelich.de

