Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

Swiss Confederation

Spatially congrent postprocessing of the contration using of the contration was the second of the contration of the cont

- Part 1: cGAN postprocessing for hourly cloud cover which actually works¹
 - Reference forecasts: gEMOS or dense NN + ECC or Schaake shuffle
 - Univariate and multivariate calibration
 - Pros and cons of the different methods
- Part 2: cGAN postprocessing for precipitation which does not work yet
 - Reference forecasts: COSMO-E, spatially pooled COSMO-E, (similarity based) quantile regression

¹Dai, Y., & Hemri, S. (2021). Spatially coherent postprocessing of cloud cover ensemble forecasts. Monthly Weather Review, 149(12).

COSMO-E worst

ECMWF_IFS best

MeteoSwiss

ECMWF_IFS worst

ECMWF ML Workshop, 1 April 2022

COSMO-E best

Dataset

- Predictors (subsampled)
 - Numerical forecasts (COSMO-E and IFS [+12h])

 Training set: 05.2016 - 04.2018

 Validation set: 05.2018 - 04.2019

05.2019 - 04.2020 Test set:

- **Observations**
 - EUMETSAT CM-SAF satellite data, 2 × 2 km resolution

Conditional GAN (cGAN)

CLCT var CLCH mean CLCL mean TCC mean TCC_var HCC mean MCC_mean LCC mean LCC var HPBL mean T_2M_mean

CLCT mean

embeddings

init time lead time hour of day month

MeteoSwiss

ECMWF ML Workshop, 1 April 2022

©Hemri et al.

Forecast skill

- High DJF CRPS in fog prone regions
- gEMOS skill > COSMO-E skill, but not significantly in fog prone regions
- denseNN and cGAN improve forecast skill compared to gEMOS

Multivariate verification

- p-variogram skill score
- cGAN performs best
- Schaake shuffle outperforms ECC for gEMOS and denseNN

Data efficiency

10

hour of day

15

20

more data needed

MeteoSwiss

ECMWF ML Workshop, 1 April 2022

©Hemri et al.

University of

Summary part 1

Three approaches for post-processing cloud cover

	gEMOS	Dense NN	cGAN
Interpretability	***	* \$ \$ \$	***
Forecast skill	***	****	***
Calibration	***	***	***
Realistic images	****	****	***
Realistic videos ¹	****	****	****
Data efficiency	***	***	***

raw model output ★★ model output with ECC

¹temporal consistency provided by ECC

cGAN for precipitation

- Is cGAN model for cloud cover transferable to precipitation?
- Is it possible to include temporal dependence?
- Issues with skewness of precipitation
- Work with daily precipitation accumulations to simplify the problem
- Not transforming the data at all leads to 'most realistic' cGAN samples
 - Trade-off: training works only for simple generator architecture

Generator architecture

- 11th, 16th, and 21th member of ordered and spatially smoothed COSMO-E used as features
- no compression of features
- Temporal split and lead day dependent 2D convolutions

Example forecasts

rel. frequency 0.04 0.08

CRPS and calibration

COSMO-E

cGAN

pooled

- rank histograms for lead day 3
- pooled: simple spatial pooling
- QR: quantile regression
- QR_sim: similiarity / analog based QR

bin

corr. xi2: 4.02

bin

corr. xi2: 2.23

Brier score and AUC

MeteoSwiss

ECMWF ML Workshop, 1 April 2022

©Hemri et al.

Summary part 2

- cGAN generates quite realistic looking precipitation fields
- cGAN skill in terms of CRPS is poor
- cGAN produces comparatively well calibrated forecasts
- cGAN resolution probably poor, issues with conditioning on features
- Probably, there is still a lot of room for improvement

