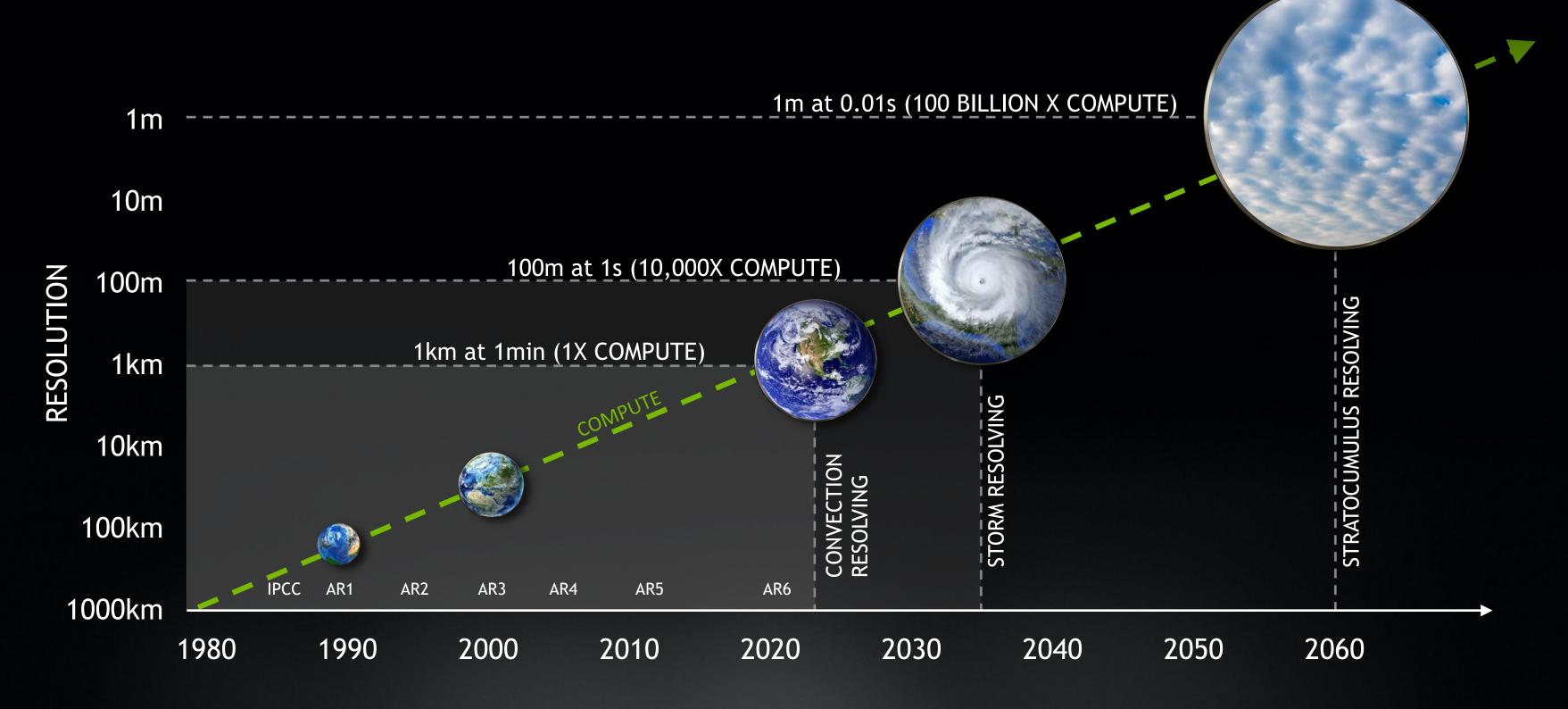


BUILDING DIGITAL TWINS OF THE EARTH FOR NVIDIA'S EARTH-2 INITIATIVE

Karthik Kashinath, Senior Al Developer Technologist, Al-HPC, NVIDIA Jaideep Pathak, Senior Deep Learning Engineer, NVIDIA

CLIMATE SCIENCE REQUIRES MILLION-X SPEEDUPS

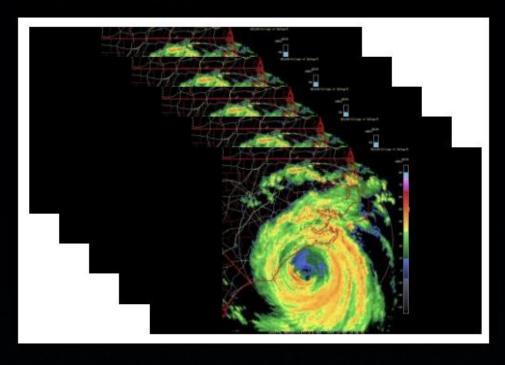
Computational constraints limit model resolution

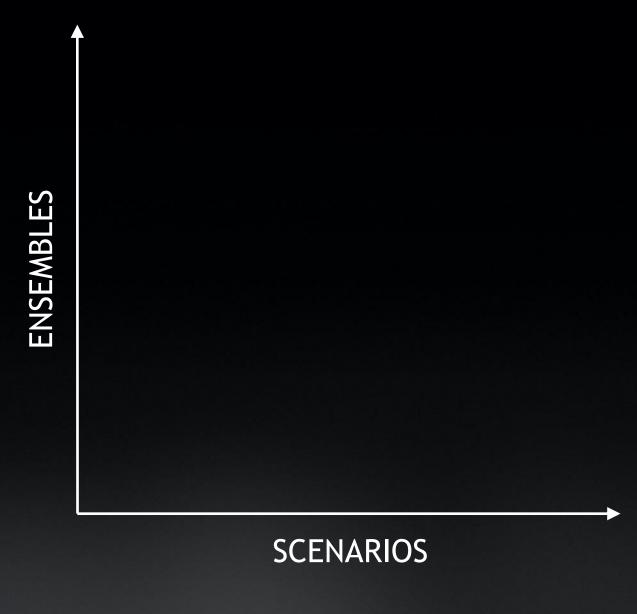


CLIMATE SCIENCE REQUIRES MILLION-X SPEEDUPS

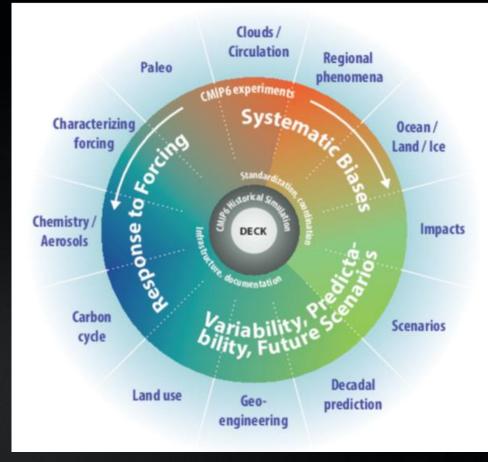
Computational constraints limit the size of ensembles and how many scenarios can be explored

10s -> 1000s OF MEMBERS

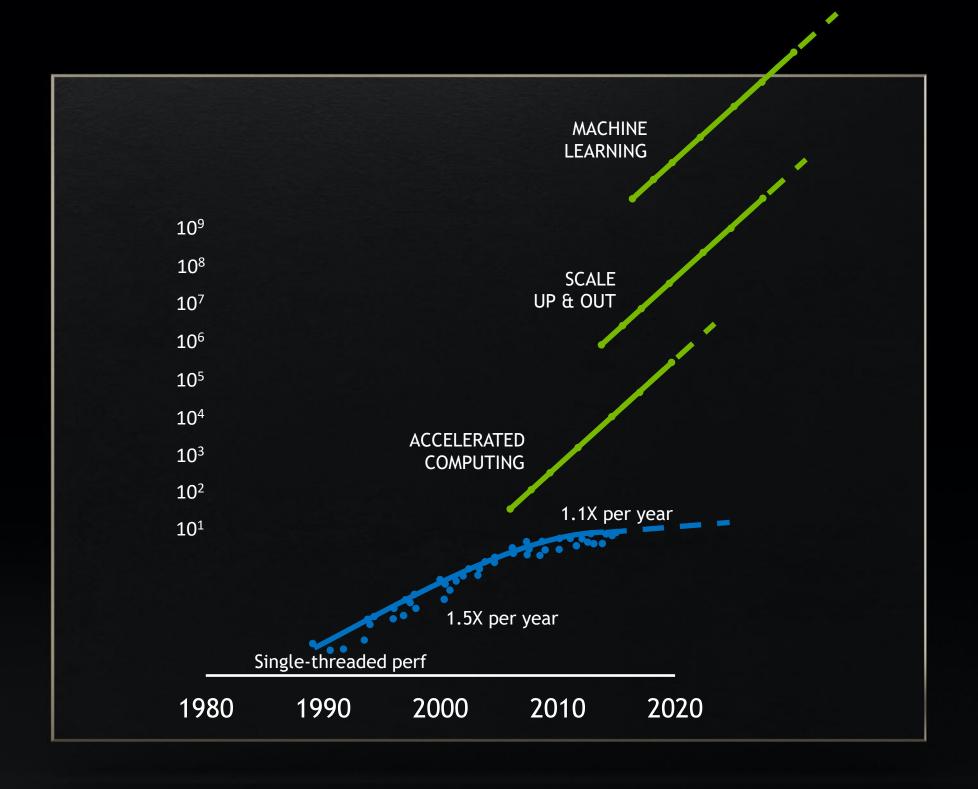




10s -> 1000s OF SCENARIOS



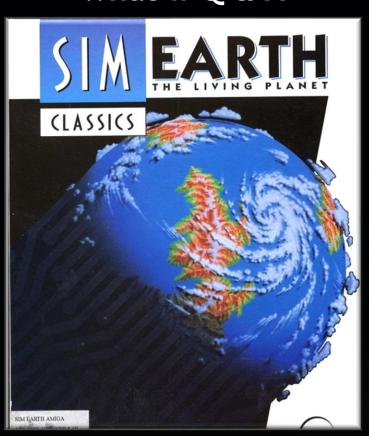
ADVANCES IN COMPUTING AND ML PROMISE MILLION-X SPEEDUPS



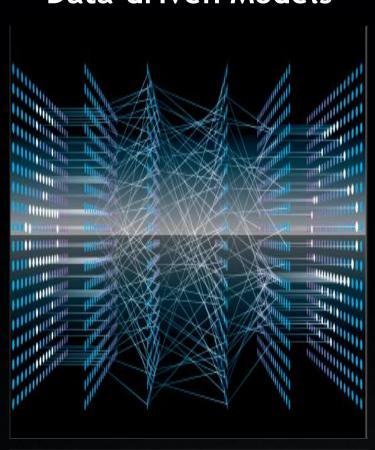
DESTINATION-EARTH: DIGITAL REPLICAS OF EARTH

Project DestinE envisions what Earth-system modeling could be

Intuitive User Interface: What-if Q & A

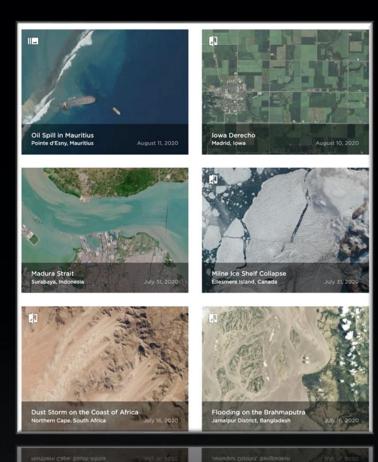


Data-driven Models

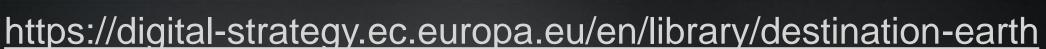


Storm-resolving Models

Unified Observations



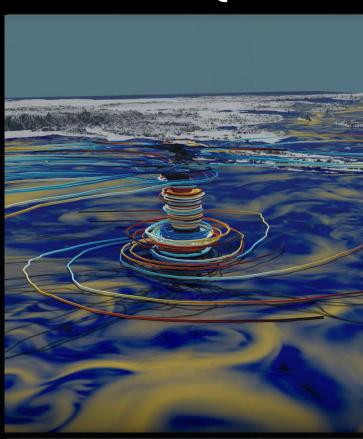
Exascale Compute



DESTINATION-EARTH: DIGITAL REPLICAS OF EARTH

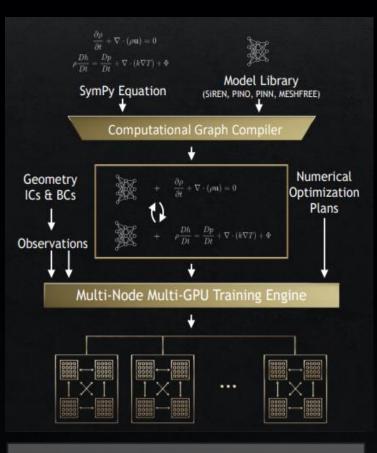
NVIDIA has technologies needed to make this vision a reality

Intuitive User Interface: What-if Q & A



OMNIVERSE

Data-driven Models



PHYSICS-ML / MODULUS

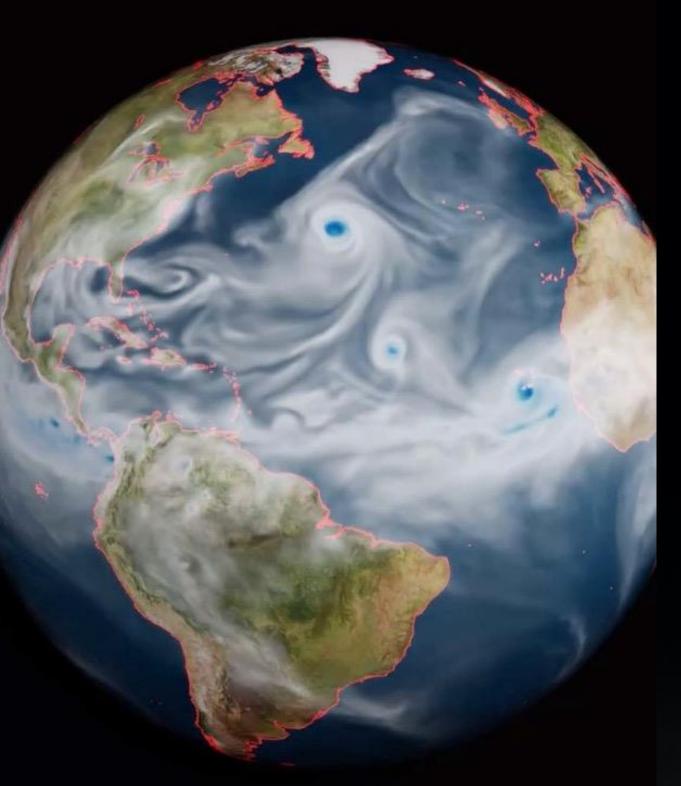
Storm-resolving Models

GPU-ACCELERATION

Unified Observations

OMNIVERSE NUCLEUS

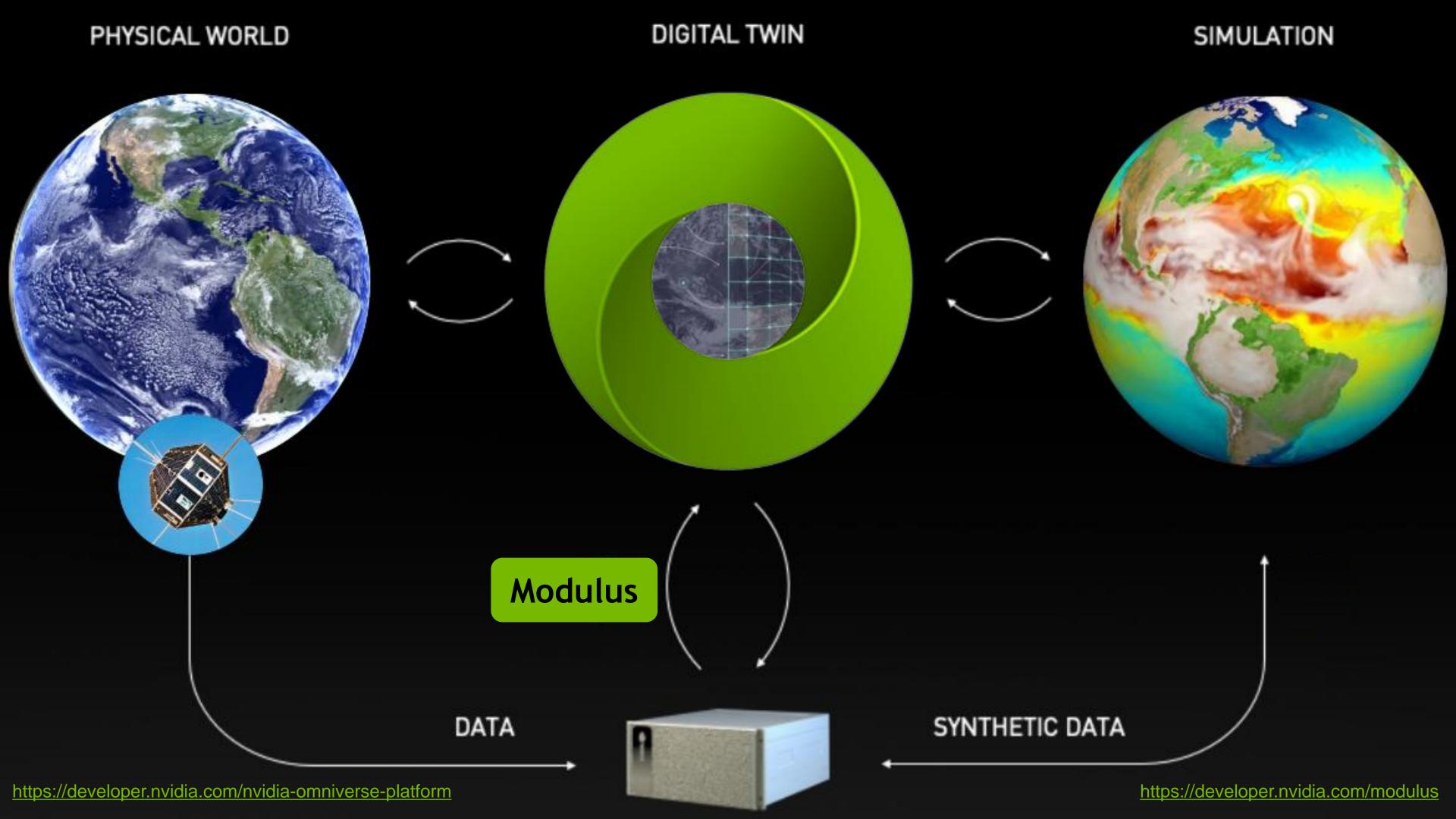
Exascale Compute



Earth-2

WHY?
INTERACTIVITY AT SCALE:
UNFOLD AND EXTRACT
INFORMATION

HOW?
DIGITAL TWINS TO MONITOR,
PREDICT, MITIGATE, AND
ADAPT



EARTH DIGITAL TWIN <u>DEEP LEARNING CHALLENGES AND APPROACHES</u>

CHALLENGES

- Extrapolation
- Physical consistency & causality
- Uncertainty quantification & Calibration
- Data fusion & assimilation
- Scale up & out
- •

APPROACHES

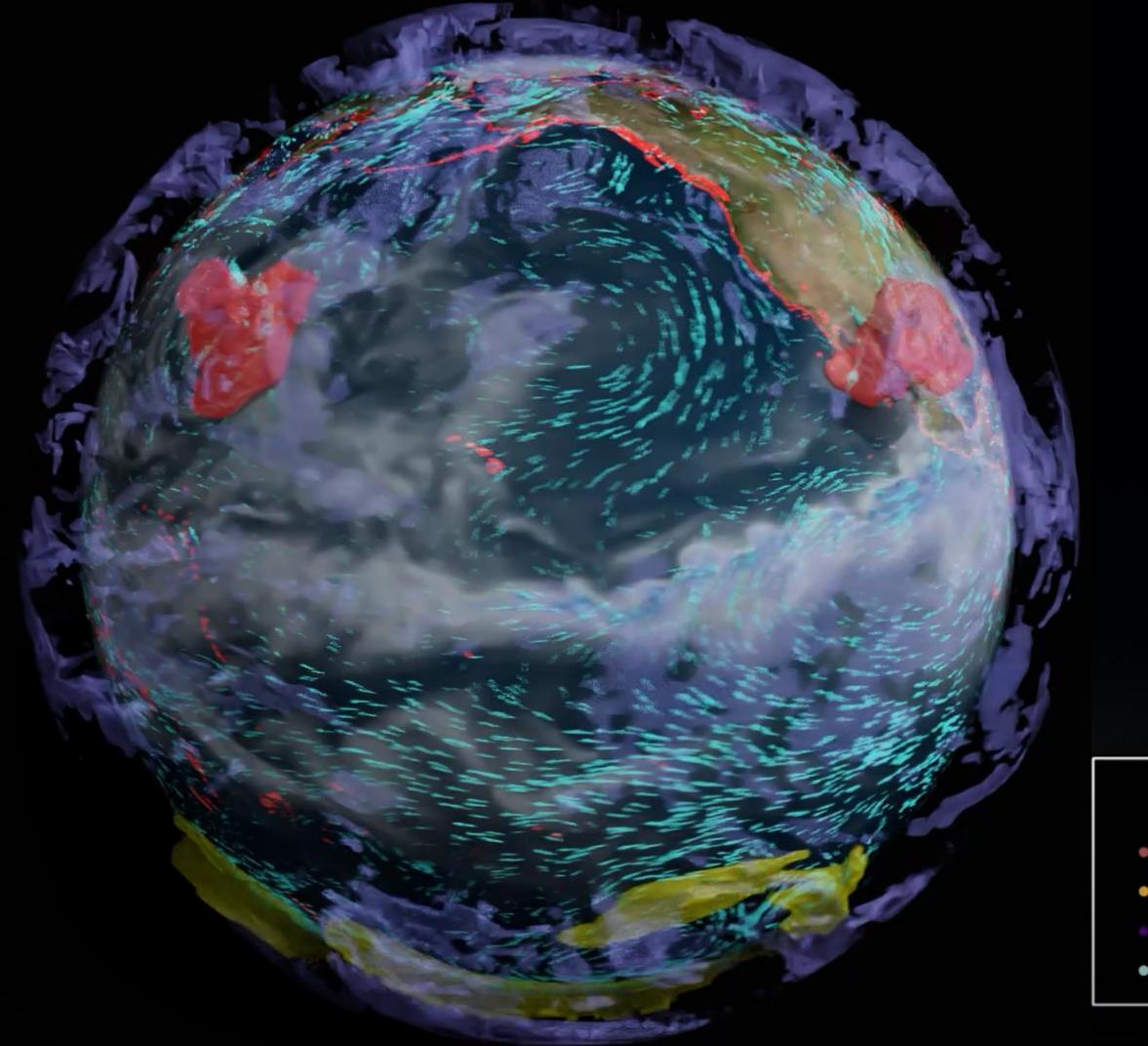
- Emulation
- Super-resolution
- Segmentation
- Online learning
- Reinforcement Learning
- • •

YEAR 2100

+3 C Global Temperature

+60% Extreme Tropical Cyclones

+400% Extreme Atmospheric Rivers

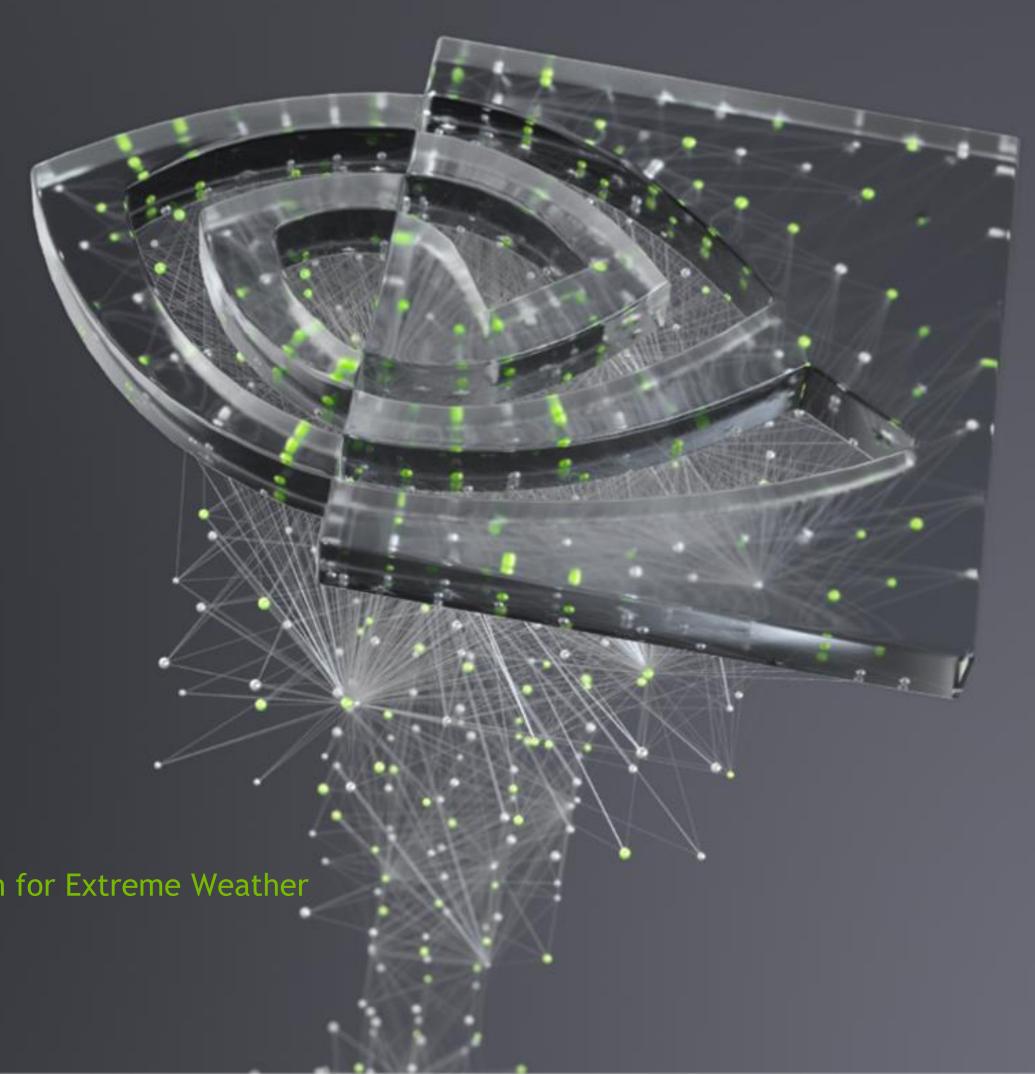


2100, SEP14

- TROPICAL CYCLONES
- ATMOSPHERIC RIVERS
 - CLOUDS
- WINDS

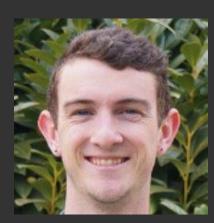
FourCastNet

Global data-driven high-resolution Earth digital twin for Extreme Weather



J. Pathak NVIDIA

S. Subramanian LBL

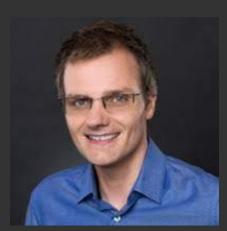


P. Harrington LBL

S. Raja U. Michigan

A. Chattopadyay Rice. U.

M. Mardani NVIDIA



T. Kurth NVIDIA

D. Hall NVIDIA

Z. Li Caltech

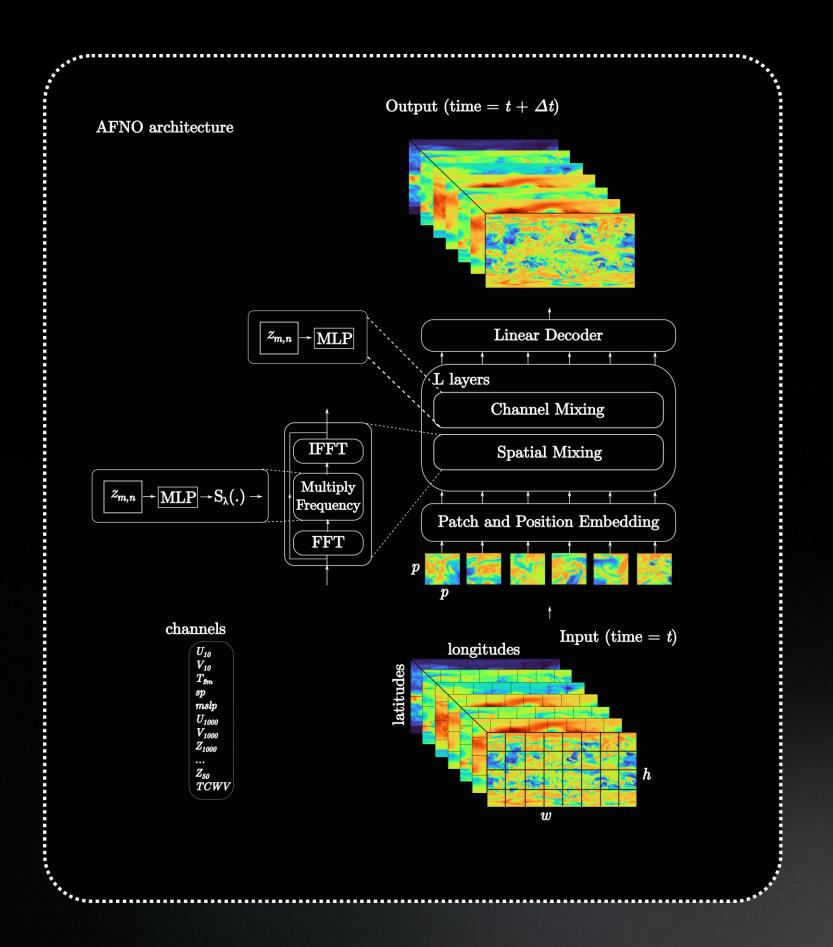
K. Azzizzadenesheli Purdue

P. Hassanzadeh Rice U.

K. Kashinath NVIDIA

A. Anandkumar (PI) Caltech/NVIDIA

FOURCASTNET (FOURIER FORECASTING NETWORK)



Purely data-driven machine learning surrogate weather model

Trained on ERA5 reanalysis data at the native resolution of 0.25 degrees.

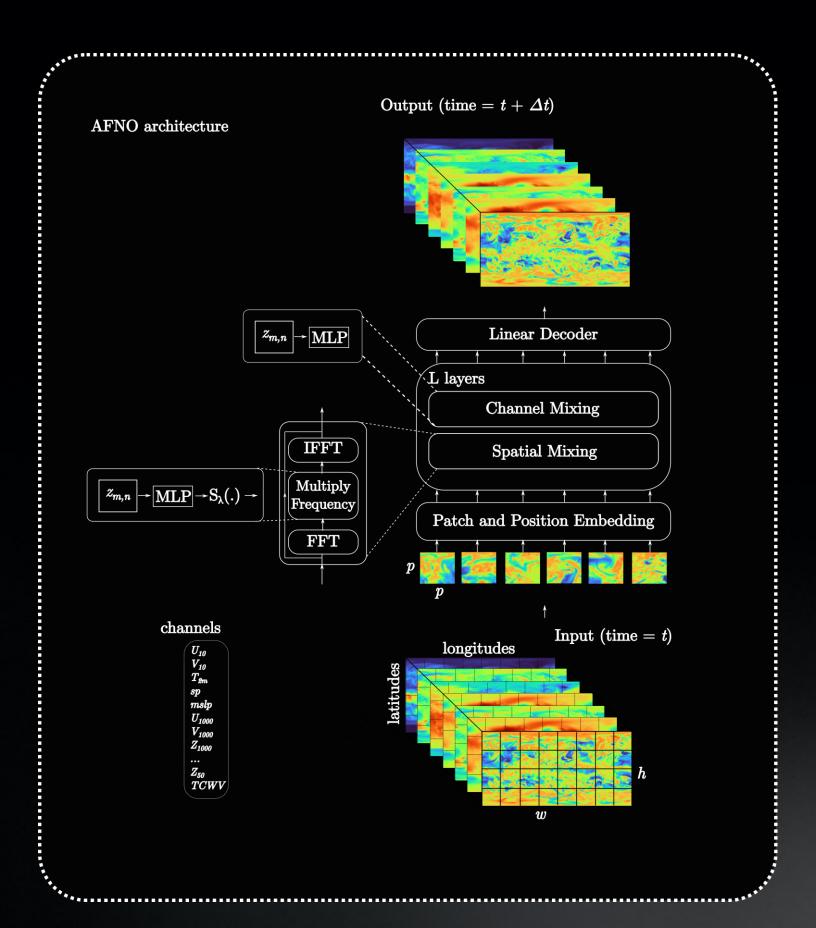
State-of-the-art for Deep Learning based weather surrogate models.

Highest resolution data driven model ever trained.

Guibas et al. (2022), Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers, ICLR 2022.

Pathak et al. (2022), FourCastNet: A Global Datadriven High-resolution Weather Model using Adaptive Fourier Neural Operators, arXiv:2202.11214

FOURCASTNET (FOURIER FORECASTING NETWORK)



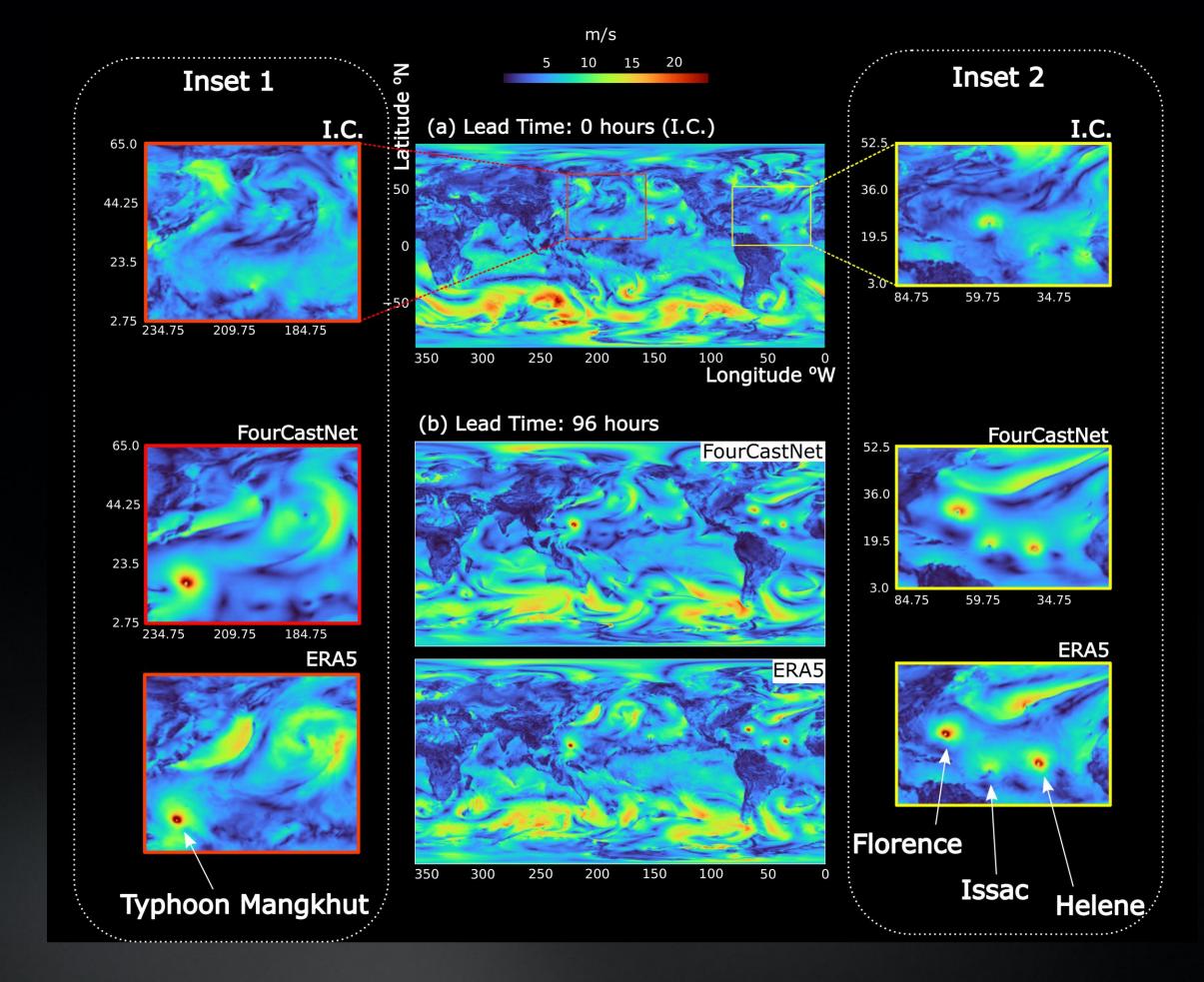
Vertical Level	Variables
Surface	$U_{10}, V_{10}, T_{2m}, sp, mslp$
1000hPa	U, V, Z
850hPa	T, U, V, Z, RH
500hPa	T, U, V, Z, RH
50hPa	Z
Integrated	TCWV

Currently models 21 atmospheric variables.

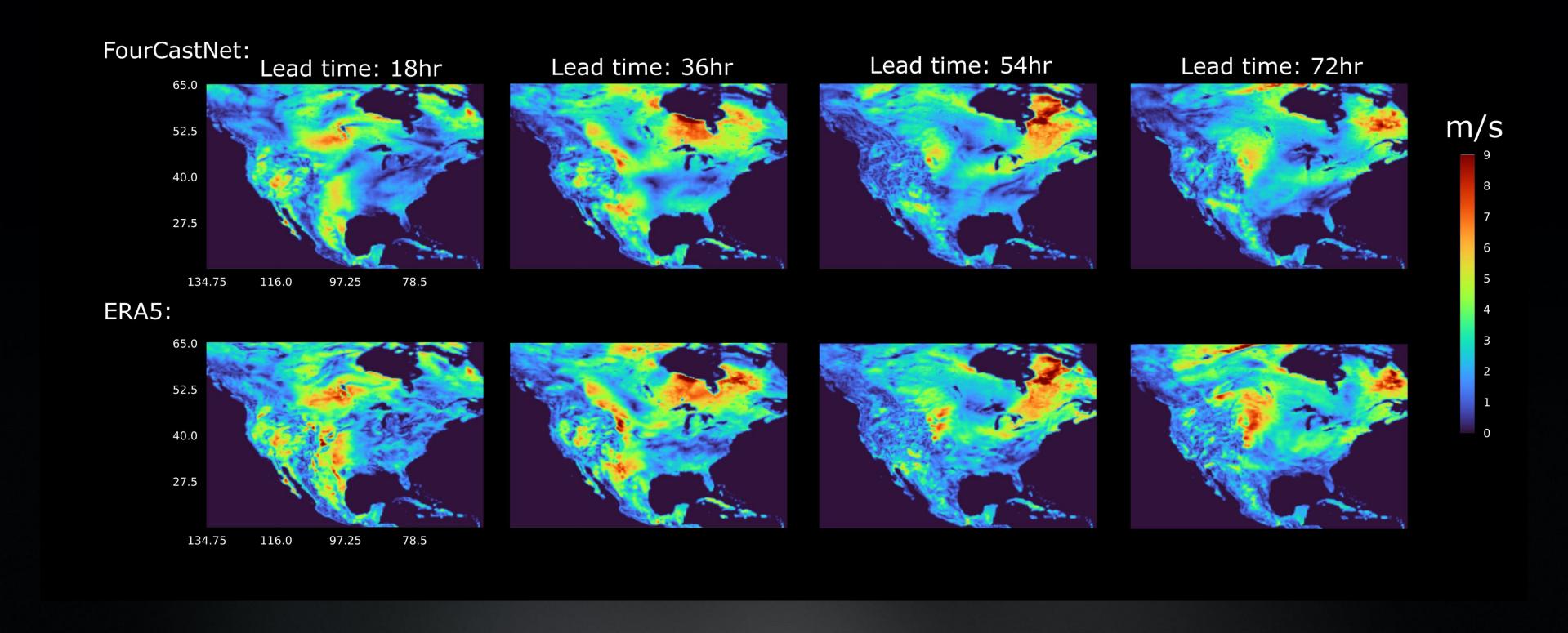
Soon to be extended to a larger set of variables to include radiation processes, vapor transport, more moisture variables, clouds.

Training set: 1979 to 2015 Validation set: 2016, 2017 Held out: 2018 onwards

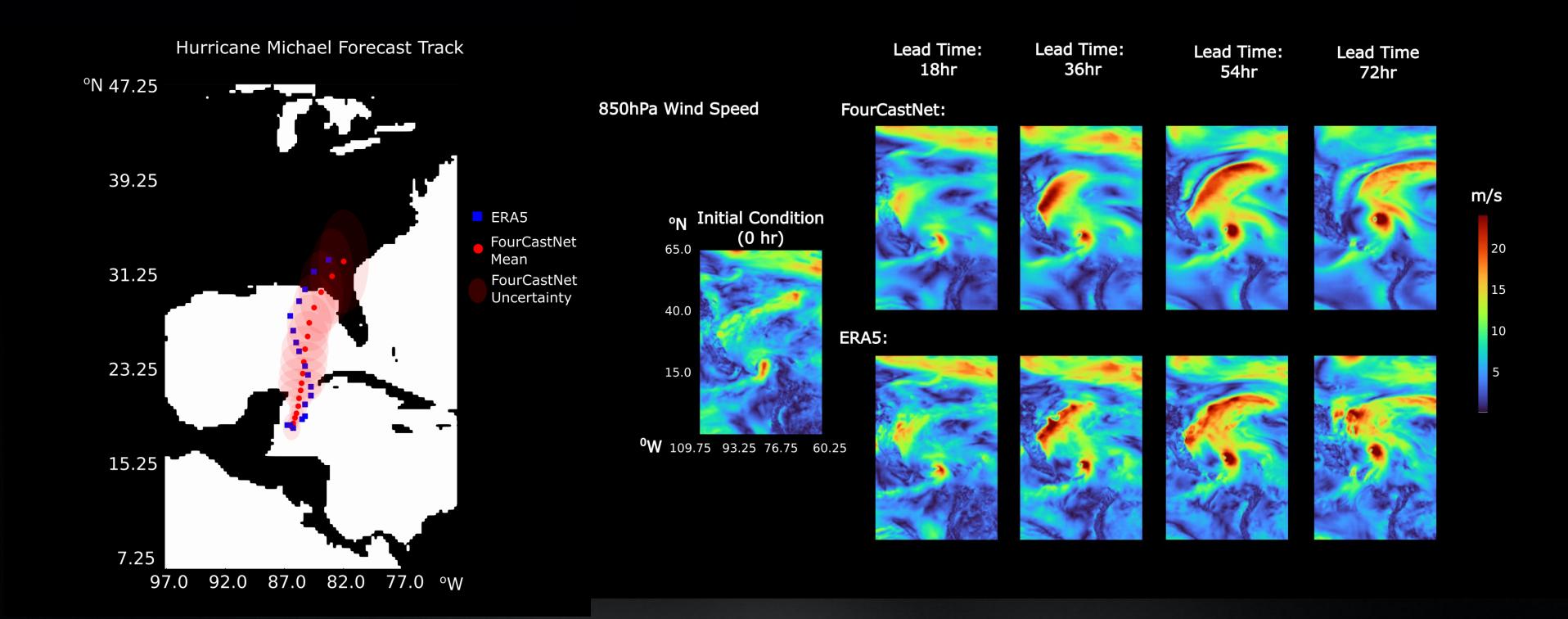
EXCELLENT SKILL ON FORECASTING SURFACE WINDS



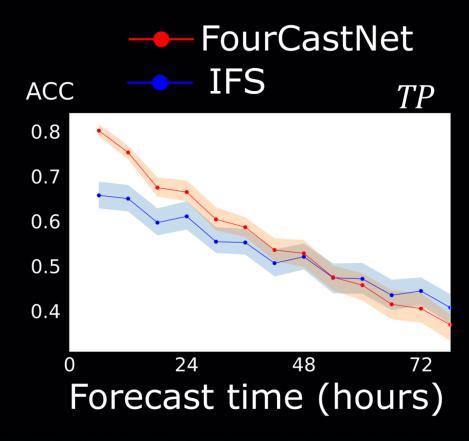
FOURCASTNET PREDICTS NEAR-SURFACE WIND FIELDS OVER LAND ACCURATELY: IMPORTANT IMPLICATIONS FOR WIND ENERGY PLANNING



FOURCASTNET PREDICTS HURRICANE PATHS AND INTENSITIES

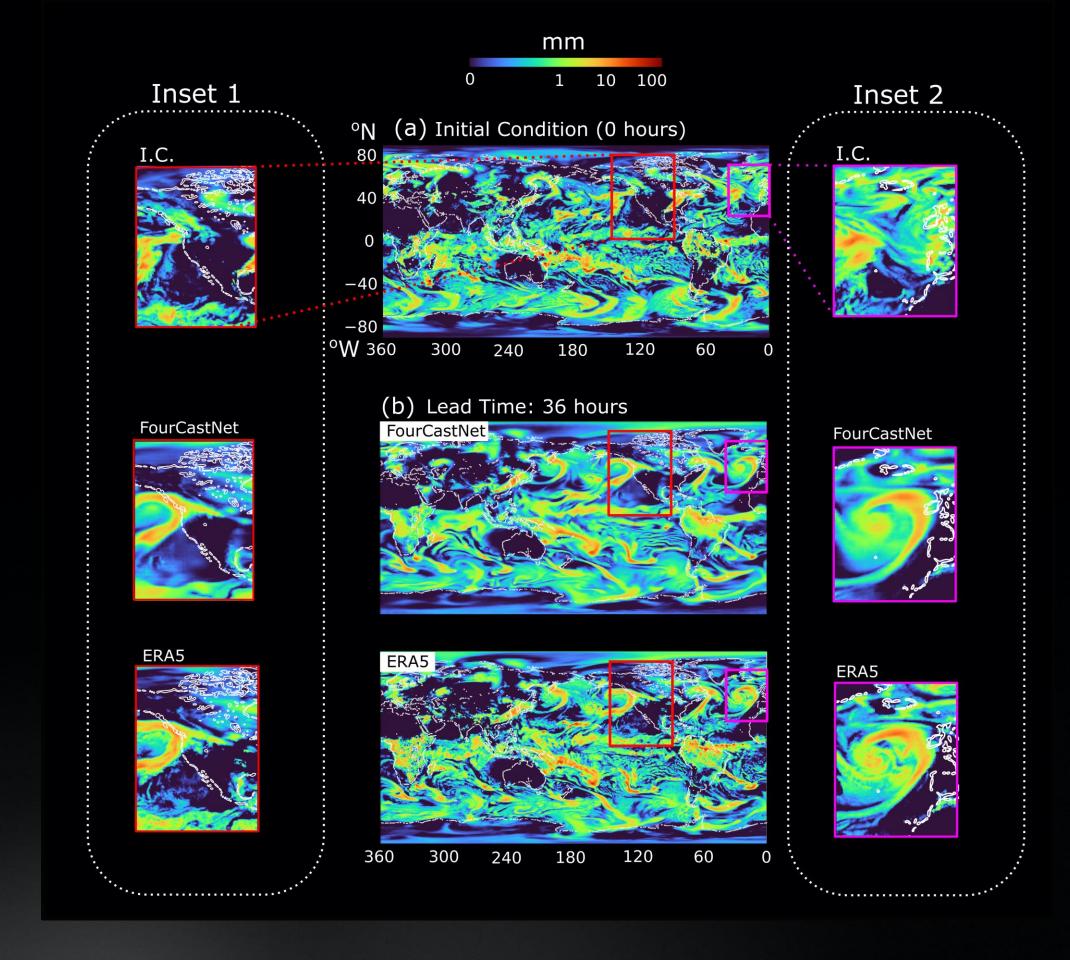


PRECIPITATION

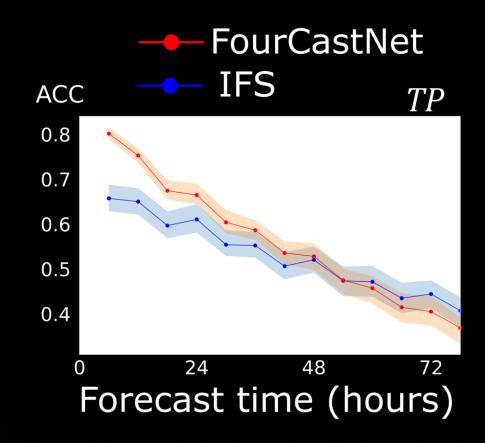


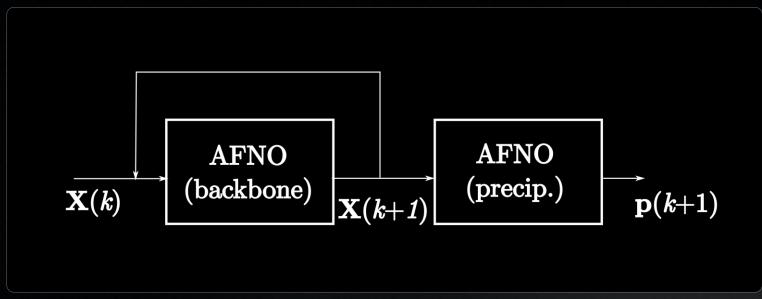
Excellent performance on forecasting precipitation with small scale features captured really well.

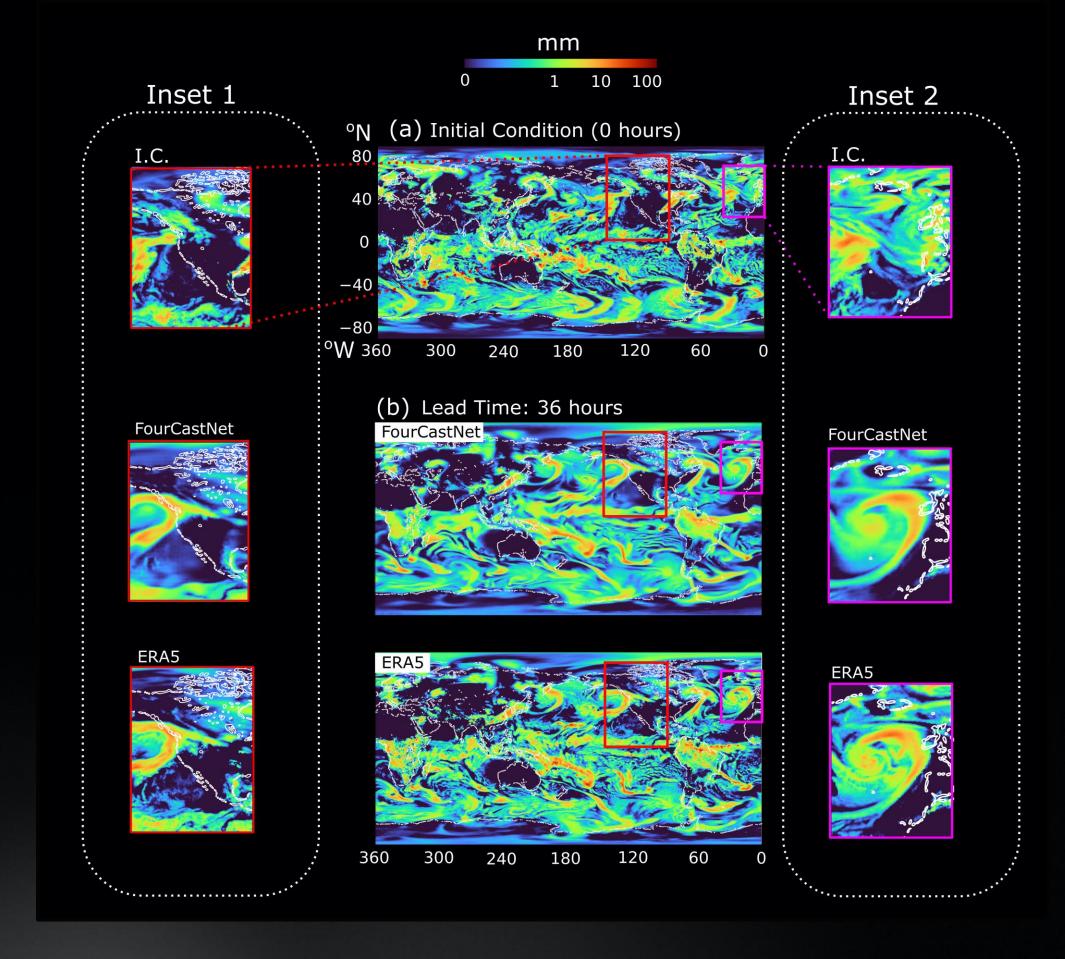
Currently we compare our forecasts to ERA5 rather than observations



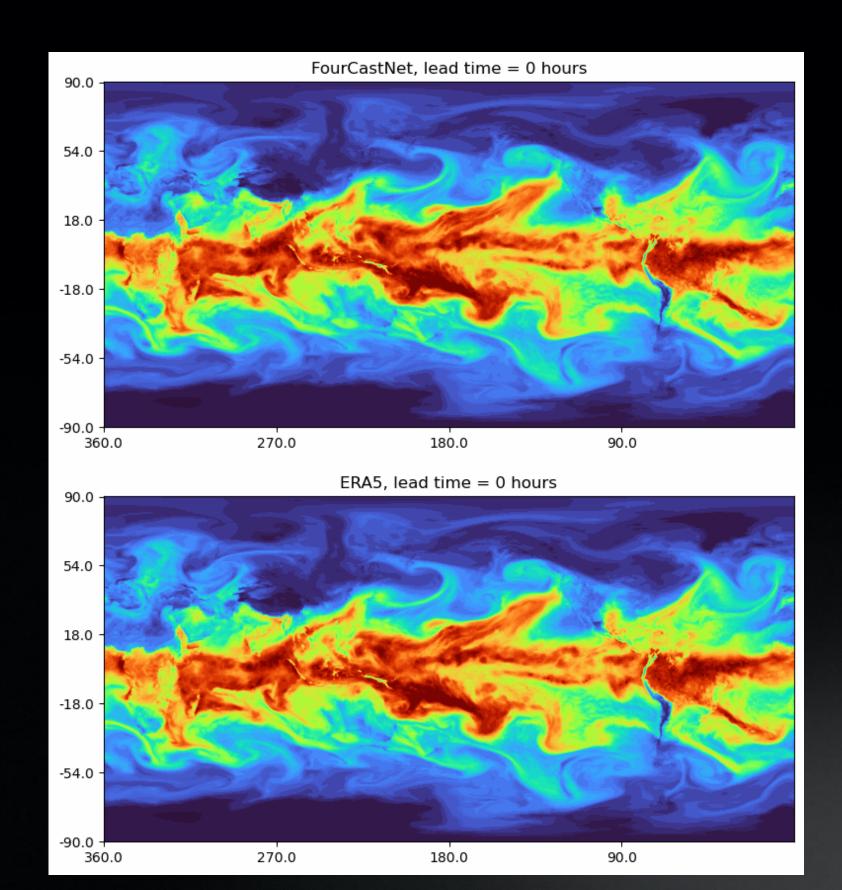
PRECIPITATION

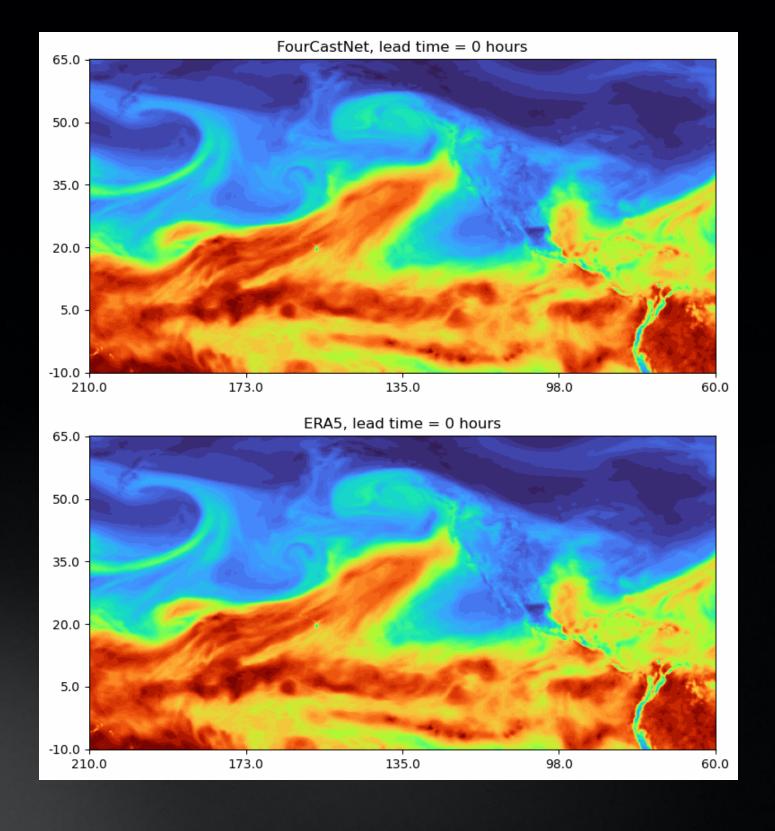




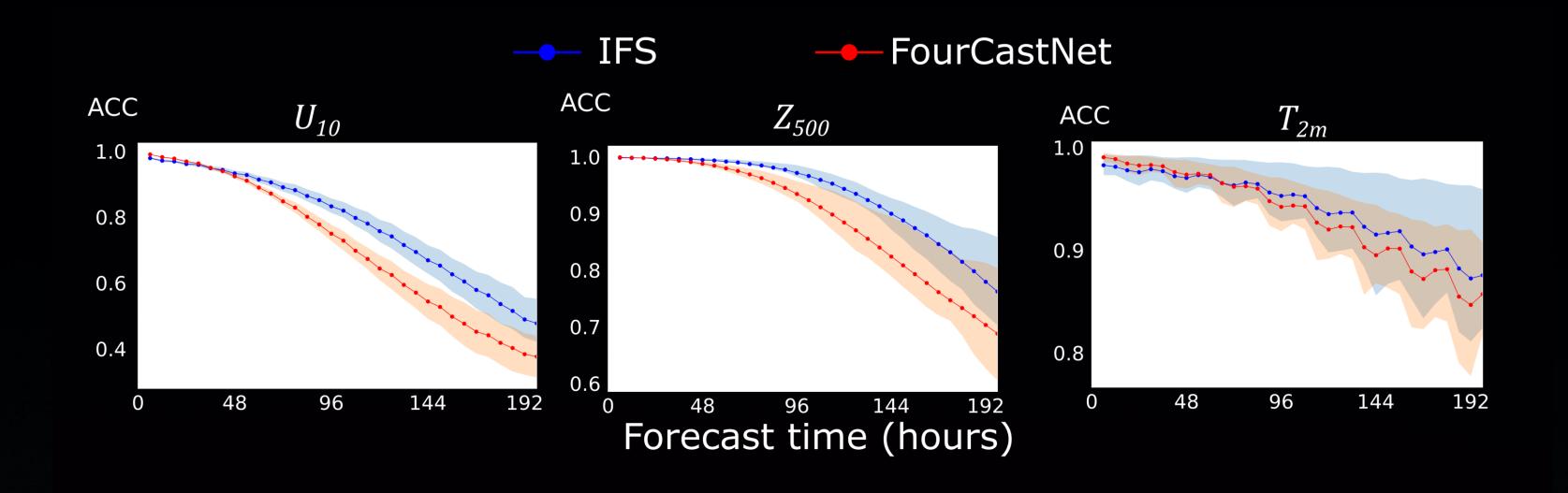


MOISTURE VARIABLES: WATER VAPOR





SHORT-TERM ACC CLOSE TO IFS

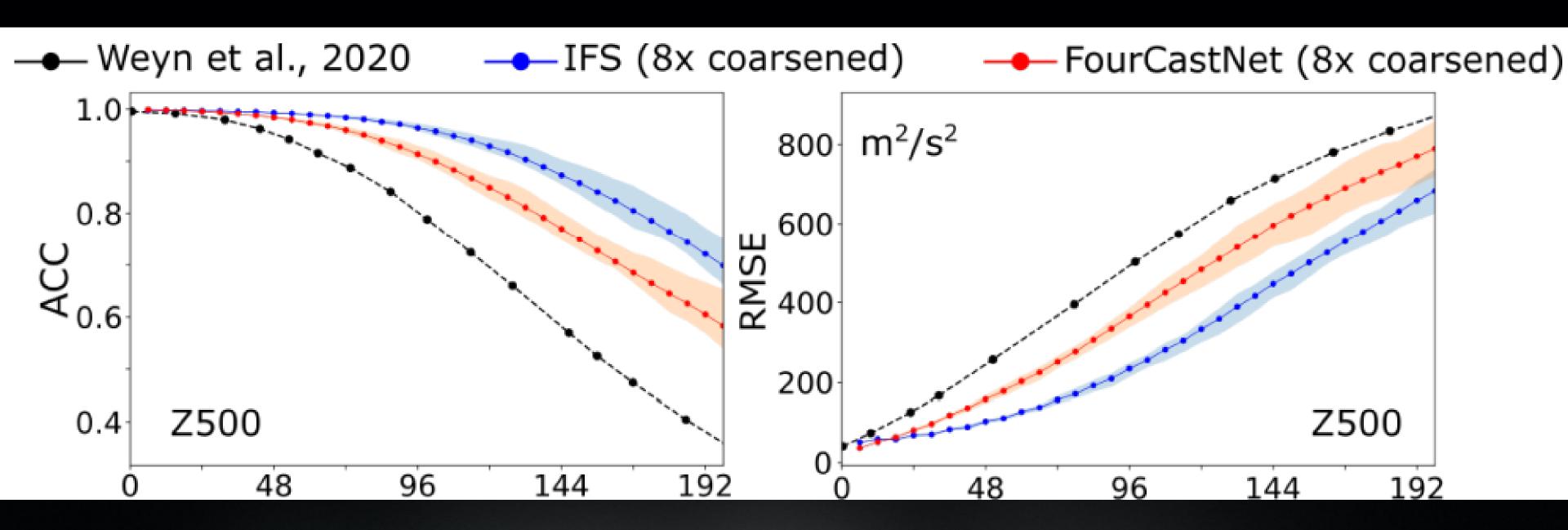


Caveat: Comparisons are made to ERA5 rather than directly to observations.

Pathak et al. (2022), FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators, arXiv:2202.11214

COMPARISON AGAINST STATE-OF-ART (DLWP, WEYN ET AL.)

8X higher resolution, significantly higher skill at weather timescales



Note: DLWP can predict reliably at S2S timescales

TODAY

- Unprecedented skill
- _o 1000-member ensemble in seconds
- 4 to 5 orders-of-magnitude speedup over NWP
- 4 orders-of-magnitude smaller energy footprint

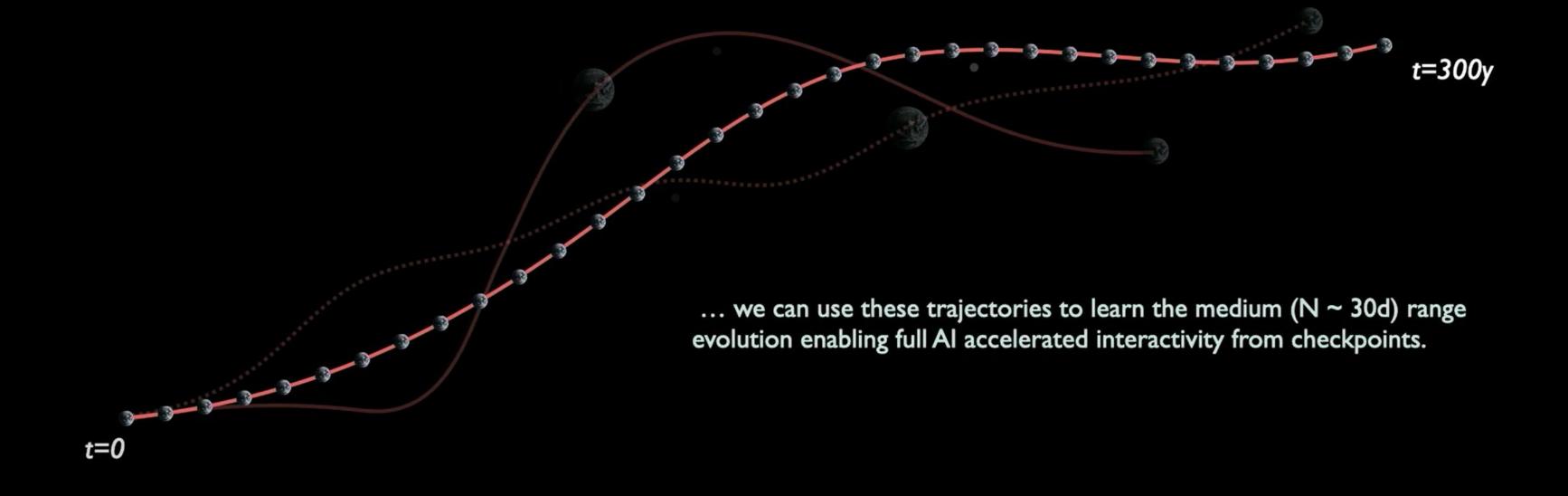
LOOKING AHEAD

- Physics constraints
- Full state vector
- Generative models for fine-scales
- Uncertainty Calibration
- Observational ground truth / diagnostics

Climate as a trajectory in a Tera-dimensional (1012) trajectory phase space

content from an XByte trajectory, let alone interact with it.

If we can compute these trajectories



If only as a first step for learning the entire system $N \to \infty$