

Agenda ML Apps & Datasets

ML Workflow Tools
Hardware Systems

Motivation, objectives & tasks
Scientific solutions & achievements
Delivered products
Outlook

Motivation: ML for weather forecasts?

Numerical atmospheric models: backbone of operational weather prediction

Motivation: ML for weather forecasts?

- Numerical atmospheric models: backbone of operational weather prediction
- Increasing success of machine learning (ML) in various applications

Motivation: ML for weather forecasts?

- Numerical atmospheric models: backbone of operational weather prediction
- Increasing success of machine learning (ML) in various applications
- ML for new applications in the weather prediction workflow

Objective: open W&C prediction as new usage domain for ML application that exploit exaflop performance

Objective: open W&C prediction as new usage domain for ML application that exploit exaflop performance

ML apps & datasets: deliverables

ML benchmark Requirements
datasets documentation for ML
solutions and tools
in applications areas A1-

Check the deliverable reports: https://www.maelstrom-eurohpc.eu/deliverables

ML apps & datasets: deliverables

• Q1: Can we use machine learning method to provide accurate and high-resolution weather forecasts? → Application 1, 2 and 5

- Q1: Can we use machine learning method to provide accurate and high-resolution weather forecasts? → Application 1, 2 and 5
- Q2: Can we rely on weather forecasts by machine learning for renewable energy generation? > Application 6

- Q1: Can we use machine learning method to provide accurate and high-resolution weather forecasts? → Application 1, 2 and 5
- Q2: Can we rely on weather forecasts by machine learning for renewable energy generation? → Application 6
- Q3: Can we use machine learning to create a sufficient accurate, yet fast emulator? →
 Application 3

- Q1: Can we use machine learning method to provide accurate and high-resolution weather forecasts? → Application 1, 2 and 5
- Q2: Can we rely on weather forecasts by machine learning for renewable energy generation? → Application 6
- Q3: Can we use machine learning to create a sufficient accurate, yet fast emulator? →
 Application 3
- Q4: Can we use machine learning to quantify uncertainty and correct weather forecast biases? → Application 1 and 4.

App 1: Blend citizen observations and numerical weather forecasts

Why citizen observations for weather forecasts?

- Strong demand for accurate local weather forecasts
- NWP models may not be able to forecast local (extreme) weather
- Citizen observations can be applied for high-resolution analyses
- NWP post-processing can significantly improve operational weather forecasts on weather apps like yr.no

App 1: Blend citizen observations and numerical weather forecasts

Why citizen observations for weather forecasts?

- Strong demand for accurate local weather forecasts
- NWP models may not be able to forecast local (extreme) weather
- Citizen observations can be applied for high-resolution analyses
- NWP post-processing can significantly improve operational weather forecasts on weather apps like yr.no

ML solution & achievement:

- Goal: hourly probabilistic temperature and/or precipitation forecasts in terms of 10th, 50th and 90th percentiles on a 1×1 km grid for the Nordic area
- Approach: convolutional networks with filters grouped by lead time
- Results: MAE (50th percentile) about 0.76 K vs 1.04 K for raw NWP

App 2: Incorporate social media data into prediction framework

Observations Data assimilation Numeric weather forecasts Post-processing of model output Product generation

Why social media for weather forecasts?

- Weather-related information from social networks could enhance local weather predictions for most dominant infrastructures in Europe (e.g. airports) in near real-time
- Tweets: a new sensor

ML solution:

Adopt weather and unstructured text data with meta data (e.g. time, geolocation) for weather forecasts

App 3: neural network emulators for faster weather forecast models & data assimilation

Data assimilation

Numeric weather forecasts

Post-processing of model output

Product generation

Why neural network as emulator for radiative heating?

- Radiative heating is a vital component of atmospheric models.
- Significant cost → lower resolution and larger timestep
- More physics (e.g. 3D cloud effects) → we can't afford in the weather forecasting model

App 3: neural network emulators for faster weather forecast models & data assimilation

Observations

Data assimilation

Numeric weather forecasts

Post-processing of model output

Product generation

Why neural network as emulator for radiative heating?

- Radiative heating is a vital component of atmospheric models.
- Significant cost → lower resolution and larger timestep
- More physics (e.g. 3D cloud effects) → we can't afford in the weather forecasting model

ML solution and achievement:

- Approach: MLP, CNN & RNN.
- Results: Offline metrics very promising (RMSE ~0.5W/m²)

App 4: Improved ensemble predictions in forecast post-processing

Observations

Data assimilation

Numeric weather forecasts

W&C prediction workflow

Post-processing of model output

Product generation

Why improve ensemble prediction by ML?

- Weather is a chaotic system.
 Minor perturbations affect the further outcome we predict
- Ensemble prediction predicts weather as a probability distribution.
- ML solution should be applied to uncertainty quantification and bias corrections.

App 4: Improved ensemble predictions in forecast post-processing

Observations Data assimilation Numeric weather forecasts Post-processing of model output Product generation

Why improve ensemble prediction by ML?

- Weather is a chaotic system.
 Minor perturbations affect the further outcome we predict
- Ensemble prediction predicts weather as a probability distribution.
- ML solution should be applied to uncertainty quantification and bias corrections.

ML solution and achievement:

- Goal: Predict T850,
 Z500 as a probability distribution
- Approach: inceptionstyle network for Uncertainty Quantification

App 5: Improved local weather predictions in forecast post-processing

Observations Data assimilation Numeric weather forecasts Post-processing of model output Product generation

W&C prediction workflow

Why ML for downscaling 2m temperature?

- High spatial variability of T2m in complex terrain
- Local variations in T2m with adverse effects (e.g. Loss in agriculture)
- Increase in spatial resolution
 - → Computational cost
 - → Challenges across gray-zone resolutions

App 5: Improved local weather predictions in forecast post-processing

Observations Data assimilation Numeric weather forecasts Post-processing of model output Product generation

Why ML for downscaling 2m temperature?

- High spatial variability of T2m in complex terrain
- Local variations in T2m with adverse effects (e.g. Loss in agriculture)
- Increase in spatial resolution
 - → Computational cost
 - → Challenges across gray-zone resolutions

ML solution and achievement:

- Goal: Mapping from (coarsened) 0.8° to 0.1° grid
- Approach: U-Net
- Results: MSE ~ 0.2 K² Longitude (°E)

 Conglitude (°E)

 Longitude (°E)

 Longitude (°E)

 Longitude (°E)

App 6: Bespoke weather forecasts to support energy production in Europe

Data assimilation Numeric weather forecasts Post-processing of model output Product generation

Observations

Why ML for energy generation forecast?

- Allow large market share of renewable energies by optimal efficiency throughout all providers (solar, wind, biogas, storage capacities, ...)
 → requirement for accurate forecasts for energy generation
- Increase of renewable energy generation important for mitigation to climate change
- Accurate predictions for the exact location of wind/solar parks by ML algorithms

App 6: Bespoke weather forecasts to support energy production in Europe

Why ML for energy generation forecast?

- Allow large market share of renewable energies by optimal efficiency throughout all providers (solar, wind, biogas, storage capacities, ...)
 → requirement for accurate forecasts for energy generation
- Increase of renewable energy generation important for mitigation to climate change
- Accurate predictions for the exact location of wind/solar parks by ML algorithms

Observations Data assimilation Numeric weather forecasts Post-processing of model output Product generation

ML solution and achievement:

- Goal: Power production forecasts
- Approach: Gradient boosting (intraday/day ahead), Neural Networks (intraday)
- Results: NMAE approximately: Wind 12%; Solar 7%

Delivered: Benchmark datasets

Application	Res.	Grid size	Data size	Data format	Pip package name	CML dataset name
A1: Postprocessing	1 km	1796×2321	~ 5 TB	NetCDF	climetlab-maelstrom-yr	'maelstrom-yr'
A3: Radiation	40 km	137 vertical levels	~ 2 TB	NetCDF/TFRecord s	climetlab-maelstrom-radiation	'maelstrom-radiation'
A4: ENS10	0.5°	720x361x11x11	~ 2.6 TB	GRIB/NetCDF	climetlab-maelstrom-ens10	'maelstrom-ens10'
A5: Downscaling	0.1°	128x96	~ 7.5 GB	NetCDF	climetlab-maelstrom- downscaling	'maelstrom-downscaling'
A6: Power production	0.1°	351x551 10 vertical levels	~ O (TB)	NetCDF	climetlab-maelstrom-power- production	'maelstrom-constants-a-b' 'maelstrom-power-production' 'maelstrom-weather-model-level' 'maelstrom-weather-pressure-level' 'maelstrom-weather-surface-level'

Delivered: Benchmark datasets

<u>CliMetLab</u> manages the downloading and loading of data, for a variety of datasets, dubbed plugins.

```
!pip install climetlab climetlab-maelstrom-radiation
import climetlab as cml
cmlds = cml.load_dataset('maelstrom-radiation')
ds = cmlds.to_xarray()
```

Application	Res.	Grid size	Data size	Data format	Pip package name	CML dataset name
A1: Postprocessing	1 km	1796×2321	~ 5 TB	NetCDF	climetlab-maelstrom-yr	'maelstrom-yr'
A3: Radiation	40 km	137 vertical levels	~ 2 TB	NetCDF/TFRecord s	climetlab-maelstrom-radiation	'maelstrom-radiation'
A4: ENS10	0.5°	720x361x11x11	~ 2.6 TB	GRIB/NetCDF	climetlab-maelstrom-ens10	'maelstrom-ens10'
A5: Downscaling	0.1°	128x96	~ 7.5 GB	NetCDF	climetlab-maelstrom- downscaling	'maelstrom-downscaling'
A6: Power production	0.1°	351x551 10 vertical levels	~ O (TB)	NetCDF	climetlab-maelstrom-power- production	'maelstrom-constants-a-b' 'maelstrom-power-production' 'maelstrom-weather-model-level' 'maelstrom-weather-pressure-level' 'maelstrom-weather-surface-level'

Quantile Scores:
$$S_{\tau}(u) = \begin{cases} u(\tau - 1), & u < 0 \\ u \tau, & u \ge 0 \end{cases} \rightarrow AP1$$

The Ranked Probability Score (CRPS): CRPS $(F, y) = \int_{-\infty}^{\infty} \left[F(x) - 1_{x>y} \right]^2 dx \rightarrow AP4$

Quantile Scores:
$$S_{\tau}(u) = \begin{cases} u(\tau - 1), & u < 0 \\ u \tau, & u \ge 0 \end{cases} \rightarrow \mathbf{AP1}$$

The Ranked Probability Score (CRPS): CRPS $(F, y) = \int_{-\infty}^{\infty} \left[F(x) - 1_{x>y} \right]^2 dx \rightarrow AP4$

Latitude-Weighted Mean Square Error: $MSE_{lw} = \frac{1}{n} \sum_{i=1}^{N} (\hat{Y}_i - Y_i)^2 L(i) \rightarrow AP2, AP6$

Quantile Scores:
$$S_{\tau}(u) = \begin{cases} u(\tau - 1), & u < 0 \\ u \tau, & u \ge 0 \end{cases} \rightarrow \mathbf{AP1}$$

The Ranked Probability Score (CRPS): CRPS $(F, y) = \int_{-\infty}^{\infty} \left[F(x) - 1_{x>y} \right]^2 dx \rightarrow AP4$

Latitude-Weighted Mean Square Error: $MSE_{lw} = \frac{1}{n}\sum_{i=1}^{N}(\hat{Y}_i - Y_i)^2 L(i)$ \rightarrow AP2, AP6

Adversarial loss :min max $(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log \left(D(x) \right) \right] + E_{z \sim p_{z}(z)} \left[\log \left(1 - D(G_{z}) \right) \right]$. \rightarrow AP1, AP5

G D

Quantile Scores:
$$S_{\tau}(u) = \begin{cases} u(\tau - 1), & u < 0 \\ u \tau, & u \ge 0 \end{cases} \rightarrow \mathbf{AP1}$$

The Ranked Probability Score (CRPS): CRPS $(F, y) = \int_{-\infty}^{\infty} \left[F(x) - 1_{x>y} \right]^2 dx \rightarrow AP4$

Latitude-Weighted Mean Square Error: $MSE_{lw} = \frac{1}{n}\sum_{i=1}^{N}(\hat{Y}_i - Y_i)^2 L(i) \rightarrow AP2, AP6$

Adversarial loss :min max $(D,G) = \mathbb{E}_{x \sim p_{data}(x)} [\log(D(x))] + E_{z \sim p_{z}(z)} [\log(1 - D(G_{z}))]$. \rightarrow AP1, AP5

 Other loss functions: Structural Similarity Index (SSIM), Mean Square Error (MSE) and Mean Absolute Error (MAE)

Quantile Scores:
$$S_{\tau}(u) = \begin{cases} u(\tau - 1), & u < 0 \\ u \tau, & u \ge 0 \end{cases} \rightarrow \mathbf{AP1}$$

The Ranked Probability Score (CRPS): CRPS $(F, y) = \int_{-\infty}^{\infty} \left[F(x) - 1_{x>y} \right]^2 dx \rightarrow AP4$

Latitude-Weighted Mean Square Error: $MSE_{lw} = \frac{1}{n} \sum_{i=1}^{N} (\hat{Y}_i - Y_i)^2 L(i) \rightarrow AP2, AP6$

Adversarial loss :min max $(D,G) = \mathbb{E}_{x \sim p_{data}(x)} [\log(D(x))] + E_{z \sim p_{z}(z)} [\log(1 - D(G_{z}))]$. \rightarrow AP1, AP5

• Other loss functions: Structural Similarity Index (SSIM), Mean Square Error (MSE) and Mean Absolute Error (MAE)

Jupyter notebooks have been created to explore the datasets and demonstrate simple machine learning solutions to act as first benchmarks → https://www.maelstrom-eurohpc.eu/deliverables

Towards Tier 2 Datasets → Large data

Towards Tier 2 Datasets → Large data

Use ML tools → Integrate ML solutions with workflow tools

Towards Tier 2 Datasets → Large data

Use ML tools → Integrate ML solutions with workflow tools

Scientific aspects -> Further ML solution developments for all applications

Towards Tier 2 Datasets → Large data

Use ML tools → Integrate ML solutions with workflow tools

Scientific aspects -> Further ML solution developments for all applications

Hardware Testing → Parallelizing ML solutions on HPC

www.maelstrom-eurohpc.eu

MAELSTROM

Thank you

