

The DEEP Projects: 10 years turning heterogeneity into modularity

Estela Suarez, Jülich Supercomputing Centre (JSC) 28.03.2022 – MAELSTROM Workshop

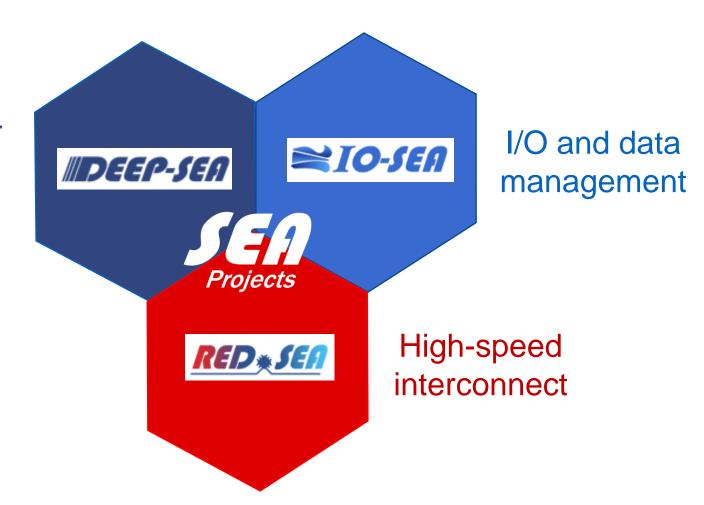
The DEEP projects

2011-2021: The DEEP projects

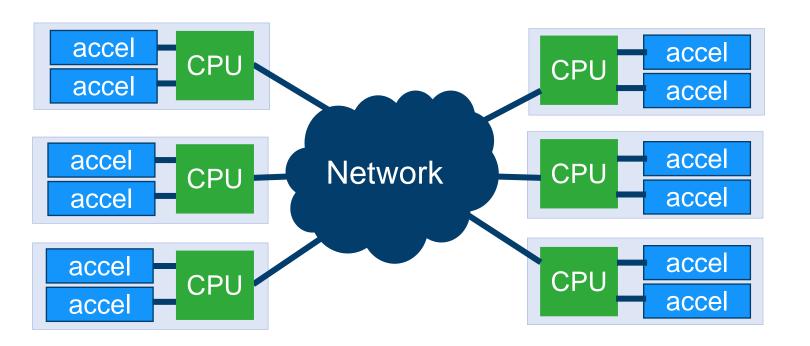
- **DEEP** (2011 2015)
 - Introduced Cluster-Booster architecture
- **DEEP-ER** (2013 2017)
 - Added I/O and resiliency functionalities
- **DEEP-EST** (2017 2021)
 - Modular Supercomputer Architecture

2021-2024 The SEA projects

DEEP-SEA, IO-SEA, RED-SEA



SEA Projects family

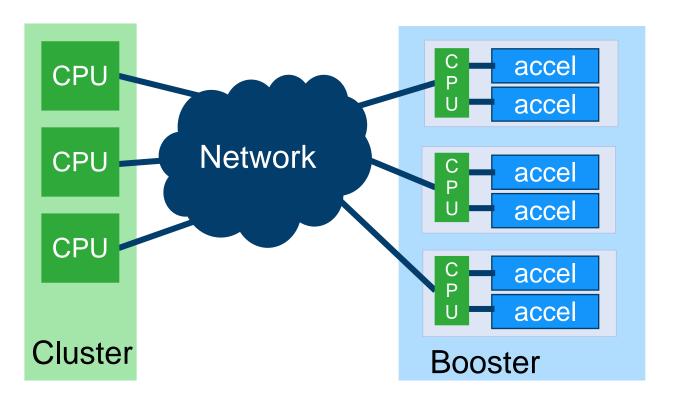

Provide solutions for Modular Supercomputers of Exascale performance

Software stack for heterogeneous compute and memory systems

Heterogenous Monolithic

Every node contains accelerators (e.g. GPUs)

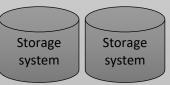
- +: Energy efficient
- +: Easy management
- -: Static assignment of accelerators to CPUs
- -: Difficult to efficiently share resources


- Every node contains CPU(s) and some accelerator
- All nodes are equal → "monolithic"

Heterogenous Modular

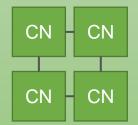
Different nodes are grouped in "modules"

- +: Energy efficient
- +: Better scalability
- +: High flexibility
- **†:** Dynamic resource assignment
- -: Complexity


- All nodes within one module are equal
- Different modules have different configurations → "modular"

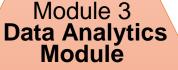
Modular Supercomputing Arch.

Composability of heterogeneous resources


Module 6
Multi-tier
Storage System

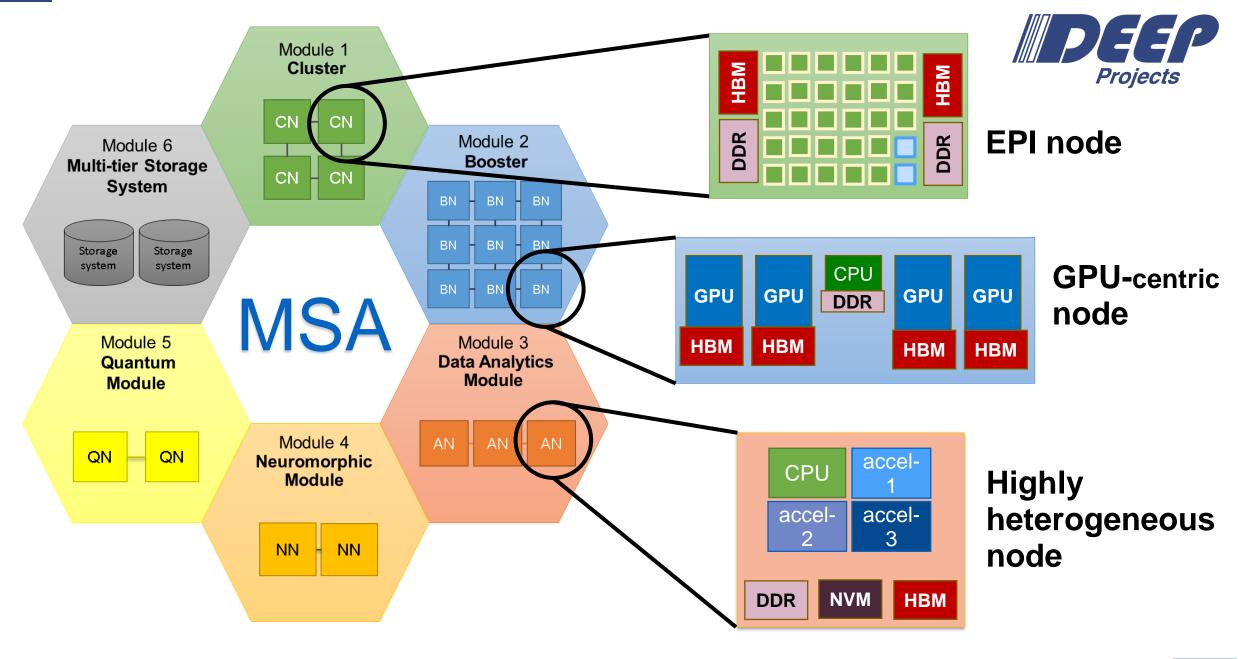
Module 5 **Quantum Module**

Module 1 Cluster



Module 4
Neuromorphic
Module

Volume 3, p 223-251, CRC Press. (2019)


(2018)

• E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing

Architecture: from idea to production", Chapter 9 in Contemporary

• E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12,

High Performance Computing: from Petascale toward Exascale,

Modular Supercomputing Arch.

Composability of heterogeneous ressources

- Effective resource-sharing
- Match application diversity

Data Analytics workflow

- E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing Architecture: from idea to production", Chapter 9 in Contemporary High Performance Computing: from Petascale toward Exascale, Volume 3, p 223-251, CRC Press. (2019)
- E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12, (2018)

CN CN Module 6 **Multi-tier** CN CN **Storage System** Storage Storage system system **MSA** Module 5 Quantum Module Module 4 QN QN Neuromorphic Module

Deep Learning workflow High-scale Simulation workflow

Module 3

Data Analytics

Module

Module 1

Cluster

The hardware Prototypes

2015

DEEP Prototype

128 Xeon + 284 KNC nodes InfiniBand + 1.5Gbit Extoll 550 TFlop/s 2016

DEEP-ER Prototype

16 Xeon + 8 KNL nodes 100Gbit Extoll 40 TFlop/s 2020

© FZJ

DEEP-EST Prototype

55 Cluster + 75 Booster + 16 Data Analytics 100 Gbit Extoll + InfiniBand + Eth 800 TFlop/s

Software environment

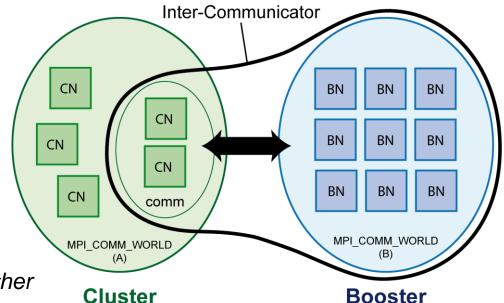
- Low-level SW: Inter-network bridging
- Scheduler: Slurm, psslurm (ParaStation Modulo)
- Filesystem: BeeGFS, GPFS
- Compilers: Intel, GCC, NVIDIA HPC SDK
- Debuggers: Intel Inspector, TotalView
- Programming: ParaStation MPI, OpenMP, OmpSs, CUDA
- Performance analysis tools: Scalasca, Score-P Extrae/Paraver, Vampir, Intel Advisor, VTune...
- Benchmarking tools: JUBE
- I/O Libraries: SIONlib, SCR, HDF5,...
- Eicker et al., Bridging the DEEP Gap Implementation of an Efficient Forwarding Protocol, Intel European Exascale Labs Report 2013 34-41
- Clauss et al., Dynamic Process Management with Allocation-internal Co-Scheduling towards Interactive Supercomputing, COSH@HiPEAC,(2016)

Heterogeneity from user's PoV

- Slurm supports the ability to submit heterogeneous jobs (since v 17.11)
 - form job pack (het-job) allocation using colon notation for salloc, sbatch, srun
 - even allowing different executables

```
$ srun -N 1 -p part1 ./first \
: -N 2 -p part2 ./second
```

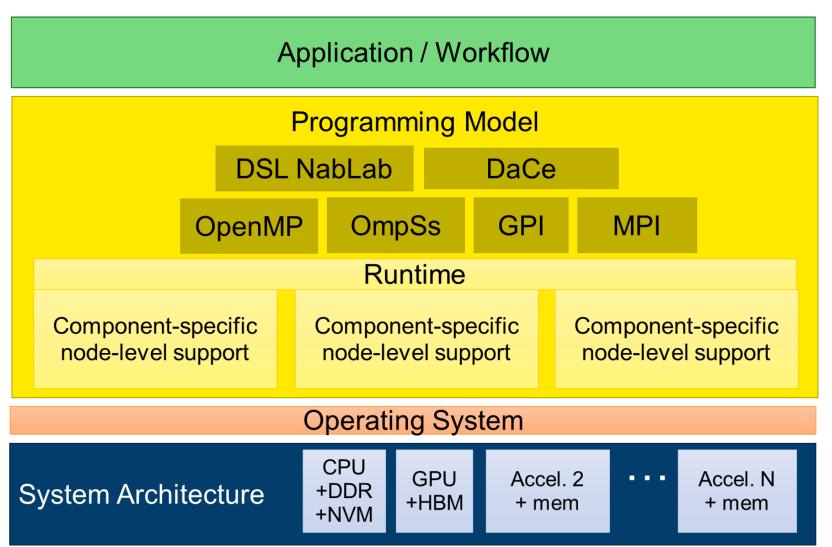
- Full support for job packs in ParaStation psslurm, with unique features for modular jobs:
 - Support for heterogeneous jobs with common MPI_COMM_WORLD, or with separated / interconnected MPI_COMM_WORLDS
 - For each job in the job pack, resources can be specified individually
 - Support global resources (e.g. gateways): psgw plugin to psmgmt + spank plugin
 - Compensates for Slurm's inability to handle global resources
 - Extends salloc, srun and sbatch
- ParaStation has further features that make is MSA-ware
 - E.g. hierarchical collective operations



ParaStation Global MPI for MSA

- An MPI application can run:
 - Using only Cluster nodes
 - Using only Booster nodes
 - Distributed over Cluster and Booster
 - In this case two executables are created
 - Collective offload process
 - Transparent data exchange via MPI
- ParaStation Global MPI
 - Uses MPI_Comm_spawn()
 - Collective spawn groups of processes from Cluster to Booster (or vice-versa)
 - Inter-communicator
 - Connects the 2 MPI_COMM_WORLD
 - Contains all parents on one side and all children on the other
 - Returned by MPI_Comm_spawn for the parents
 - Returned by MPI_Get_parent by the children

- One can also start two parts of a code and connect them via MPI_Connect()
- Or have one single common MPI_COMM_WORLD and split it into subcommunicators via MPI_Comm_Split()



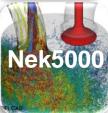
ParaStation

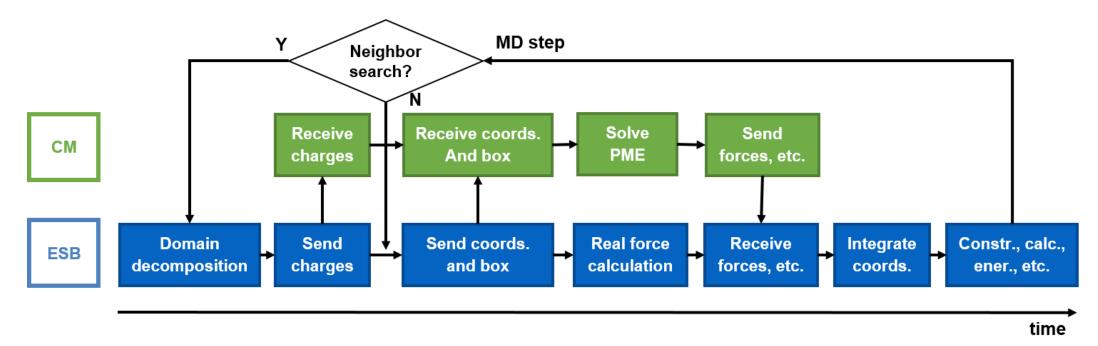
DEEP-SEA: Extending the software stack

- Support for accelerators & memory
- Malleability
- Composability
- Performance portability
- Resiliency

Co-design Applications

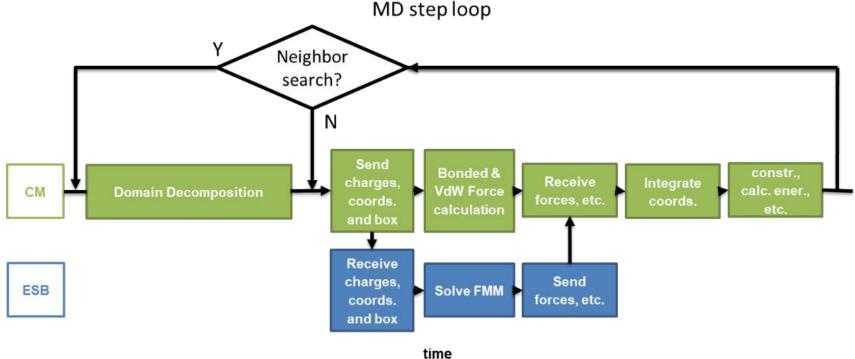
Feed user requirements in SW development, evaluate the SW-packets


- Application areas
 - Space Weather: xPic, AIDApy
 - Weather Forecast: IFS
 - Seismic imaging: RTM, BSIT
 - Molecular dynamics: GROMACS
 - Computational fluid dynamics: Nek5000
 - Neutron Monte Carlo transport for nuclear energy: PATMOS
 - Earth System Modelling: TSMP
- Additionally: low-level and synthetic benchmarks
- User support
- Early access program



GROMACS: multi-module usage in MD simulations

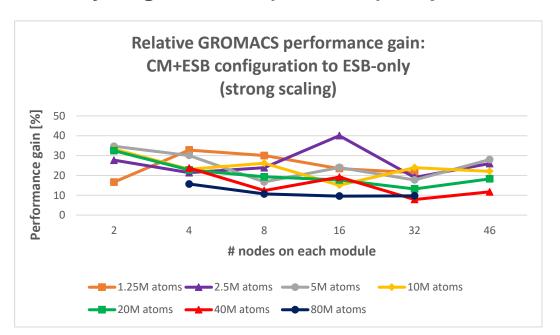
- Best mapping on MSA depends on the problem size and aims at optimizing the computational load
 - <10⁴ particles: only on Cluster (CPU)
 - ~ 10⁵ particles: Booster or DAM (Data Analytics Module)
 - >10⁶ particles (large macromolecules): pair interactions on GPU, run PME on CPUs

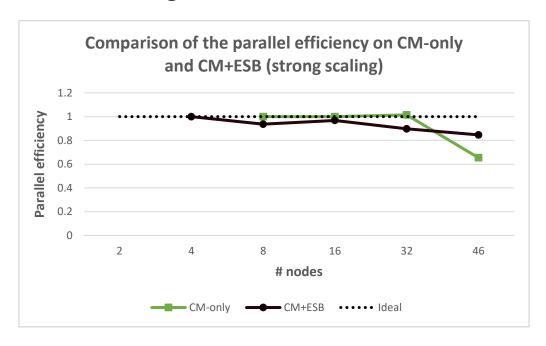


15

GROMACS: multi-module usage in MD simulations

- Best mapping on MSA depends on the problem size and aims at optimizing the computational load
 - <10⁴ particles: only on Cluster (CPU)
 - ~ 10⁵ particles: Booster or DAM (Data Analytics Module)
 - >10⁶ particles (large macromolecules): pair interactions on GPU, run PME on CPUs
 - Very large volume (>10⁶ nm³): Replace PME with FMM (Fast Multipole Method) running on ESB





GROMACS: multi-module usage in MD simulations

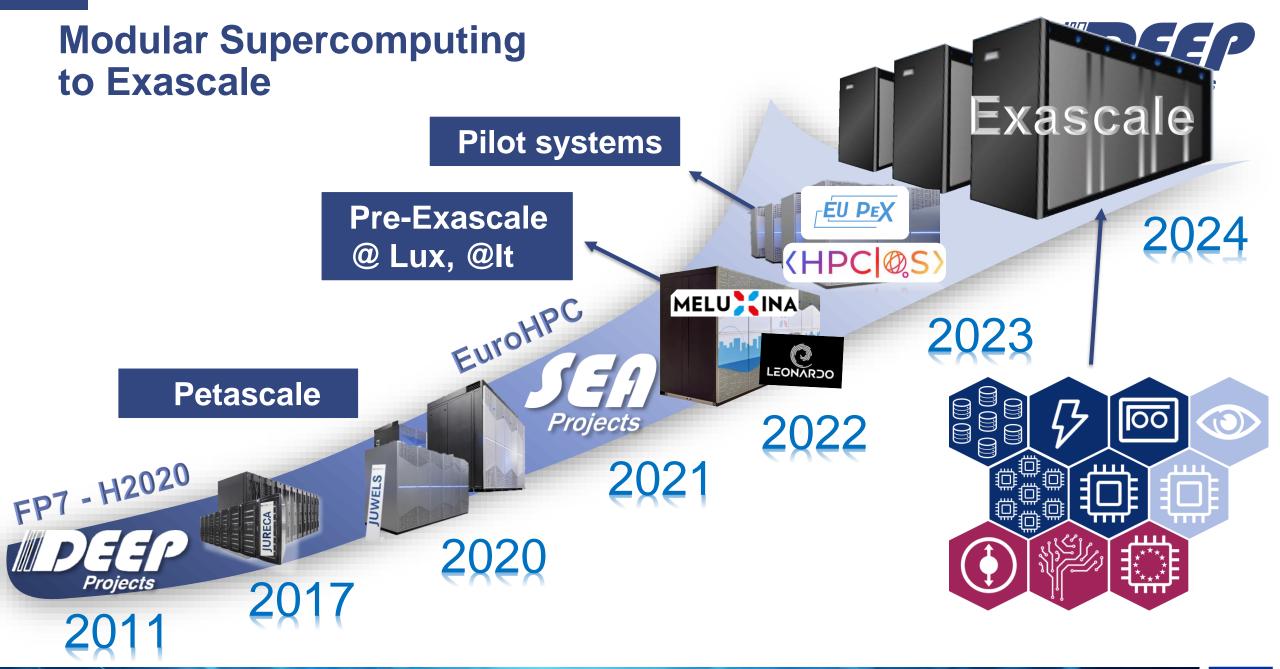
- Best mapping on MSA depends on the problem size and aims at optimizing the computational load
 - <10⁴ particles: only on Cluster (CPU)
 - ~ 10⁵ particles: Booster or DAM (Data Analytics Module)
 - >10⁶ particles (large macromolecules): pair interactions on GPU, run PME on CPUs
 - Very large volume (>10⁶ nm³): Replace PME with FMM running on ESB

TROM workshop 2022.03.28

Conclusions

The Modular Supercomputing Architecture (MSA)

- Orchestrates heterogeneity at system level
- Serves very diverse application profiles
 - Maximum flexibility for users, without taking anything away (still can use individual modules)


Distribute applications on the MSA give each code-part a suitable hardware

- Straight-forward implementation for workflows
- Partition at MPI-level interesting for multi-physics / multi-scale codes
- Monolithic codes do not need to be divided

Current / Upcoming implementations of MSA

- DEEP system, JURECA, JUWELS
- MELUXINA (Luxembourg EuroHPC Petascale system)
- EUPEX and HPCQS pilots
- ... Exascale !

Funding Acknowledgement

SPONSORED BY THE

Federal Ministry of Education and Research

The DEEP Projects have received funding from the European Commission's FP7, H2020, and EuroHPC JU Programmes, under Grant Agreements n° 287530, 610476, 754304, and 955606.

The DEER-SEA project receives also support from Belgium, France, Germany, Greece, Spain, Sweden, Switzerland, and United Kingdom

www.deep-projects.eu @DEEPprojects