Stochastic machine learning for atmospheric fields with generative adversarial networks

Jussi Leinonen
With contributions from Alexis Berne (EPFL), Daniele Nerini (MeteoSwiss), Tianle Yuan (NASA-GSFC/UMBC), Alexandre Guillaume (NASA-JPL)

LMU Colloquia in Data Science for Atmospheric and Ocean Applications, 02.06.2021
Generative adversarial networks (GANs)

Example applications:

- Image generation
- Domain translation
- Infilling
Generative models

• Typical predictive model: predict \(y = f(x) \)
 • One answer per input

• Generative model: generate samples from \(p(x) \)

• Conditional generative model: generate samples from \(p(y|x) \)
 • Multiple answers per input, uncertainty modeled
Two competing (usually convolutional) neural networks:

- **Discriminator** tries to distinguish real samples from generated ones
 - CNNs are powerful image classifiers
- **Generator** tries to output samples that discriminator considers real
 - Leans to generate realistic samples

Generative adversarial networks (GANs)
Generative adversarial networks (GANs)

GAN generator: map $p(z) \rightarrow p(x)$
Generative adversarial networks (GANs)

GAN generator: map $p(z) \rightarrow p(x)$

- Simple
- Complex, spatially correlated

Diagram:
- Noise z
- Real samples x
- Generator G
- Discriminator D
- Real/Fake
Conditional GANs

CGAN generator: map $p(z, y) \rightarrow p(x|y)$
Conditional probability problems

- Ubiquitous in Atmospheric and Climate Sciences
- Examples: inferring...
 - \(p(\text{Quantity } x \mid \text{quantities } y) \)
 - \(p(\text{Quantity } x \mid \text{measurements } y) \)
 - \(p(\text{Future state } \mid \text{current and/or past state}) \)
 - \(p(\text{High resolution field } \mid \text{low resolution field}) \)
 - \(p(\text{Complete data } \mid \text{incomplete data}) \)
- Underdetermined problems, CGANs can learn to generate the conditional distribution of solutions
 - Uncertainty modeled
Generating cloud profiles with CGAN

Dataset of collocated cloud observations from:

- MODIS spectrometer (1D, 4 variables)
- CloudSat radar (2D, 1 variable)

Can we train a CGAN to generate the CloudSat vertical profiles based on the MODIS data?
Generating cloud profiles with CGAN

Real profile (CloudSat)

Generated profile (CGAN)

Cloud properties (MODIS)
Generating cloud profiles with CGAN

Cloud properties (MODIS)

Generated profile (CGAN)

Real profile (CloudSat)

CGAN infers from MODIS:
- Cloud height
- Thickness
- Intensity (radar reflectivity)
Generating cloud profiles with CGAN

Detecting multilayer clouds and their heights

Cloud properties (MODIS)

Real profile (CloudSat)
Generating cloud profiles with CGAN

Cloud properties (MODIS)

Generated profile (CGAN)

Real profile (CloudSat)

Modeling uncertainty in cloud profile
Stochastic downscaling of precipitation data

- Objectives:
 - Demonstrate stochastic downscaling with GANs (i.e., generate high-resolution fields from low-resolution inputs)
 - Generate realistic fields
 - Use the non-deterministic aspect of GANs to model the uncertainty
 - Model the time evolution of fields consistently
 - We need a recurrent generator
Stochastic downscaling of precipitation data

Leinonen et al. 2020
Stochastic downscaling of precipitation data
Stochastic downscaling of precipitation data

Fully convolutional generator: can be applied to larger images after training

2017-07-24 10:00 UTC
Evaluation: Image quality metrics

- Single-image quality metrics don’t tell us very much
 - GAN isn’t trained to optimize them
- CRPS is an ensemble metric that uses multiple predictions, works better
Rank statistics

Does the distribution of values generated by the GAN match that of the observations?
- We don’t know the true conditional distribution
Rank statistics

• Compute the *rank* of the real observation in the ensemble, normalize to 0..1
• If uncertainty is modeled perfectly, the rank should be *uniformly distributed*
 • We can use metrics of similarity to the uniform distribution to evaluate whether the GAN is generating the right amount of uncertainty
Rank statistics

• Rank metrics converge for longer than image quality metrics
Other studies using GANs

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data
- Nowcasting radar time series
Other studies using GANs:

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data
- Nowcasting radar time series
Other studies using GANs

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data
- Nowcasting radar time series

Scher and Peßenteiner 2021, HESS
https://doi.org/10.5194/hess-2020-464
Other studies using GANs

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data
- Nowcasting radar time series

Besombes et al. 2020, NPG
https://doi.org/10.5194/npg-2021-6
Other studies using GANs

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data
- Nowcasting radar time series

Stengel et al. 2020, PNAS
https://doi.org/10.1073/pnas.1918964117
Other studies using GANs

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data
- Nowcasting radar time series

Ravuri et al. 2021
https://arxiv.org/abs/2104.00954
“Should I consider GANs for my project?”

- GANs (and CGANs in particular) seem a natural fit for many Earth science data problems
 - Consider CGANs if you need realistic spatial structure and/or uncertainty modeling
 - GANs can also do unsupervised data discovery
 - Many low-hanging fruits still available to pick!
 - But tricky to work with, needs cost-benefit evaluation
- GANs model uncertainty through sample diversity
 - Ensemble forecasters have the same mindset
 - Methods from ensemble forecasting can be applied to GANs
Questions?

https://www.youtube.com/watch?v=3OS6hz8gYC8