FourCastNet -
An Example for Deep Learning
for Earth Sciences in the HPC Context

Thorsten Kurth*, Jaideep Pathak, Morteza Mardani,
David Hall, Karthik Kashinath (NVIDIA)
Shashank Subramanian, Peter Harrington (LBL)
Sanjeev Raja (U-M), Kamyar Azizzadenesheli (Purdue U)
Ashesh Chattoadhyay, Pedram Hassanzadeh (Rice U)
Zongyi Li, Animashree Anandkumar (CalTech)

MAELSTROM Workshop, 28.03.2022
Opportunities of Deep Learning for Numerical Weather Prediction

• Data-driven models can ingest any kind of data (observations, reanalyzed data, etc.)

• Data-driven models could overcome model biases of traditional NWP

• Training process can be augmented to better predict extreme events or whatever the practitioner cares about (precipitation, wind, etc.)

• Rapid prediction process: generate large ensembles of forecasts
Challenges of Deep Learning for Numerical Weather Prediction

- Large receptive field
 - NN needs to learn to correlate large scale features
- High resolution in space and time
 - ~5° resolution translates into 32x64 pixel grid, i.e. best spatial resolution is limited by ~500km
 - Target resolution required for beating state of the art NWP: ~0.1°
- Lot of training samples required
- **Expensive training process:** leverage HPC resources
FourCastNet Architecture

- AFNO: Adaptive Fourier Neural Operator
- Vision Transformer (ViT) Model for NWP
- Tokenization of input data to reduce spatial complexity and overall memory footprint (patch embedding)
- Global continuous mixing of tokens using FFT (large scale)
- Intra-token mixing using fully connected layers (small scale)
- Repetitions of transformer blocks (12x)
- Predictions on full input resolution grid
Target Dataset

• ERA5 dataset

• Goal: predict surface wind velocities and precipitation

• Resampling to regular euclidian grid: 720x1440@6h resolution

• Use 20 input features per grid point (cf. table)

• Train: 1979-2015
 Eval: 2016, 2017
 Test: 2018+

• Total size: ~5TB

<table>
<thead>
<tr>
<th>Level</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>U_{10}, V_{10}, T_{2m}, sp, $mlsp$</td>
</tr>
<tr>
<td>1000hPa</td>
<td>U, V, Z</td>
</tr>
<tr>
<td>850hPa</td>
<td>T, U, V, Z, RH</td>
</tr>
<tr>
<td>500hPa</td>
<td>T, U, V, Z, RH</td>
</tr>
<tr>
<td>50hPa</td>
<td>Z</td>
</tr>
<tr>
<td>Integrated</td>
<td>TCWV</td>
</tr>
</tbody>
</table>
FourCastNet Training Workflow

- Pre-training predicting $X(k+1)$ from $X(k)$
- Fine-tuning with 2-step training: predicting $X(k+1)$ from $X(k)$ and then $X(k+2)$ from the previous prediction
- For precipitation: fine-tuned and frozen AFNO model with precipitation augmentation (integrated precipitation between $k+1$ and $k+2$)
- Inference model has autoregressive component
Forecasting Results - General

- FourCastNet reproduces structures
- Prediction Skill (ACC) close to IFS up to 8 days into the future
Forecasting Results - Hurricane Michael

- Excellent skill in forecasting fine scale, highly dynamic observables
- Real track within 90% CI of FourCastNets ensemble forecast
- Pressure curve for Eye follows prediction
FourCastNet and HPC

- Results have not reached 0.1° spatial resolution target
- Fine scale resolution also dependent on ViT patch embedding size
- Temporal resolution can be increased as well
- Resolution and patch embedding size scale exponentially with memory footprint
- Parallelization needed

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Patch Size</th>
<th>#Transformer Blocks</th>
<th>Memory Footprint scaffolding/running [GB]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25°</td>
<td>8</td>
<td>12</td>
<td>9.3 / 3.4</td>
</tr>
<tr>
<td>0.25°</td>
<td>4</td>
<td>12</td>
<td>32.4 / 7.0</td>
</tr>
<tr>
<td>0.25°</td>
<td>2</td>
<td>12</td>
<td>80+**</td>
</tr>
<tr>
<td>0.1°</td>
<td>4</td>
<td>24</td>
<td>405.0** / 87.5**</td>
</tr>
</tbody>
</table>

*excluding IO pipeline **extrapolated
Parallelization methods I

- **Feature parallelization**
 - splitting channel dim, dense layers become distributed matrix multiplications

- **Domain decomposition**
 - splitting height and width, FFT become distributed, LayerNorm needs to exchange stats
Parallelization methods II

• **Layer pipelining**
 place only a few transformer blocks on each GPU

• **Data parallelism**
 split the global batch across GPU

• **Hybrid parallelism**
 mix and match different types
Beyond Data Parallelism in pytorch

• Think about forward and backward pass

• Some operations might need different communication in forward pass and backward pass (example row-parallel matrix multiplication: no comm in fwd but allreduce in bwd)

• pytorch: custom autograd functions help to implement such cases

• Examples: NVIDIA Megatron

```python
# implementation
class _CopyToMatmulParallelRegion(torch.autograd.Function):
    """Pass the input to the matmul parallel region."""

    @staticmethod
def symbolic(graph, input_):
        return input_

    @staticmethod
def forward(ctx, input_):
        return input_

    @staticmethod
def backward(ctx, grad_output):
        return _reduce(grad_output, group=matmul_parallel_group)

# functional wrapper
def copy_to_matmul_parallel_region(input_):
    return _CopyToMatmulParallelRegion.apply(input_)
```
Beyond Data Parallelism in pytorch

• Think about forward and backward pass
• Some operations might need different communication in forward pass and backward pass (example row-parallel matrix multiplication: no comm in fwd but allreduce in bwd)
• pytorch: custom autograd functions help to implement such cases
• Examples: NVIDIA Megatron

```python
# example usage
def forward(self, x):
    # make sure bwd pass is correct
    x = copy_to_matmul_parallel_region(x)

    # MLP: convs are pointwise, so effectively just matmuls
    x = F.conv2d(x, self.weight1, bias=self.bias1)
    x = self.act(x)
    x = self.drop(x)
    x = F.conv2d(x, self.weight2, bias=None)

    # reduce after distributed matmul
    x = reduce_from_matmul_parallel_region(x)
    x = x + self.bias2

    return x
```
Performance Modeling

• Developed hybrid performance model
• Ops which are hard to model algorithmically: **roofline**
• Ops which are easier to model: use **tailored model** (i.e. FFTs, collective comms)
• Assume SOL execution, no comm overlap
• Implemented compute, memory and communication complexity functions depending on function parameters in pandas notebook: allows for exploring various parameters in cheap fashion
• Verified accuracy on test cases which we can run today (real execution slower because **reality is not running at SOL**)
Performance Predictions DGX A100 - Component Scaling

![Graph showing component scaling in FFT time for Domain Decomposition, Feature Parallelization, Hybrid Parallelization, and the ideal scenario.](image-url)
Performance Predictions DGX A100 - Component Scaling

[Diagram showing graph with axes labeled FFT Time [ms] and #gpus. The graph plots four different cases: Domain Decomposition, Feature Parallelization, Hybrid Parallelization, and an ideal case. The graph shows scaling beyond the nvlink island limit.]
Performance Predictions DGX A100 - Component Scaling

MLP Time [ms]

#gpus

- Domain Decomposition
- Feature Parallelization
- Hybrid Parallelization
- Ideal
Performance Predictions DGX A100 - Component Scaling

![Graph showing performance predictions for different component scalings on DGX A100. The graph plots Block Time (in ms) against the number of GPUs (#gpus). The graph includes lines for Domain Decomposition, Feature Parallelization, Hybrid Parallelization, and an ideal performance line. The data points are marked with different symbols for each component.](image-url)
Performance Predictions DGX A100 - Time To Solution

- Exponential growth of TTS with increasing resolution
Performance Variability

- Adding communication increases perf variability
- Hybrid parallelism: certain communicators can act independently (i.e. model parallel + data parallel)
- Performance variability can lead to unwanted communication skews
- Take CPU “out of the loop” as much as possible
Performance Variability

- Adding communication increases perf variability
- Hybrid parallelism: certain communicators can act independently (i.e. model parallel + data parallel)
- Performance variability can lead to unwanted communication skews
- Take CPU “out of the loop” as much as possible
Performance Variability

- Adding communication increases perf variability
- Hybrid parallelism: certain communicators can act independently (i.e. model parallel + data parallel)
- Performance variability can lead to unwanted communication skews
- Take CPU “out of the loop” as much as possible
Performance Variability

- Adding communication increases perf variability
- Hybrid parallelism: certain communicators can act independently (i.e. model parallel + data parallel)
- Performance variability can lead to unwanted communication skews
- Take CPU “out of the loop” as much as possible
CUDA Graphs

• CPU has to determine what kernels to launch next

• If CPU is busy with something else (OS context switch), it can stall GPU execution

• CUDA graphs allow the user to record a sequence of kernels to execute and replay it as often as desired

• Important: network graph has to be static and nodes of same size (no variable sample or batch size)

• For more info see pytorch documentation
CUDA Graphs

• CPU has to determine what kernels to launch next

• If CPU is busy with something else (OS context switch), it can stall GPU execution

• CUDA graphs allow the user to record a sequence of kernels to execute and replay it as often as desired

• Important: network graph has to be static and nodes of same size (no variable sample or batch size)

• For more info see pytorch documentation
CUDA Graphs

• CPU has to determine what kernels to launch next
• If CPU is busy with something else (OS context switch), it can stall GPU execution
• CUDA graphs allow the user to record a sequence of kernels to execute and replay it as often as desired
• Important: network graph has to be static and nodes of same size (no variable sample or batch size)
• For more info see pytorch documentation
IO Pipeline Challenges

• In DL, data reads are random and potentially small, but predictive
• Caching mechanism essential for large scale training (distributed FS characteristics could severely impact performance)
• Good solution should perform IO concurrently to GPU computation
• Expensive post processing operations should be executed on GPU if possible
• Caveat: many available solutions are tailored to industry applications (images, audio, text)
• Scientific apps have specific data formats: NetCDF, numpy, HDF5, GRIB, etc.
NVIDIA DALI

- **Open Source**, framework agnostic, data loading and preprocessing library
- Mainly targeting industry applications but offers a lot of flexibility via external source and custom operators
Summary

• Developed novel neural network architecture for NWP
• Demonstrated excellent skill at good spatio-temporal resolution
• Discussed parallelization opportunities beyond data parallelism
• Discussed scaling challenges of DL solutions on HPC systems: CPU interference and IO
• Demonstrated that hybrid parallelization (channel and domain parallelism on top of data parallelism is required to achieve good scaling)
• 1 sqkm spatial resolution on hourly data is the target. This might be a beyond-exascale problem
Thank You