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Introduction

Sub-grid scale processes are traditionally described by means of various approaches:

• This separation is sometimes artificial

• It is a very complicated task to bring different parts to correctly interact with each 

other

• A unified description of turbulence and boundary-layer convection

based on the equations for statistical moments is desirable and seems to be feasible
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Key features of a unified scheme

• account for non-local nature of convective motions:

large eddies → counter-gradient vertical heat and

moisture transport

• account for skewed nature of convective motions:

latent heat release within clouds of small area coverage

(large skewness) induces intensive turbulence

Towards a Unified Description 
of Turbulence and Shallow Convection



The Mellor-Yamada hierarchy 
of second-order models

Considering turbulence anisotropy…

…

Level 2: all the second moments are computed algebraically

(equilibrium equations, stationarity and homogeneity are assumed)

Level 3: TKE and scalar variances are computed prognostically (non-

stationarity) with due regard for the transport terms (non-homogeneity); all other

second moments – algebraically

Level 4: all the second moments are computed prognostically

„Artificial“ compromise – Level 2.5: TKE – prognostically, all other second

moments – algebraically
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The Mellor-Yamada hierarchy
for second-order models



TKE-Scalar Variance Closure Scheme
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non-stationarity non-homogeneity

Prognostic equations for 𝑢𝑖
′2 (kinetic energy of SGS motions) 

and for 𝜃𝑙
′2, 𝑞𝑡

′2, 𝜃𝑙
′𝑞𝑡

′ (potential energy of SGS motions) 

including third-order transport. 

Convection/stable stratification = 

Potential Energy  Kinetic Energy. 

No reason to prefer one form of energy over the other!

The scalar-variance equation  

Production = Dissipation (implicit in all models that carry the TKE equations only)

→ no way to get counter-gradient scalar fluxes 

production
dissipation
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TKE-Scalar Variance Closure Scheme

Algebraic (equilibrium) formulations for scalar fluxes,  Reynolds-stress components

Algebraic relations in 

TKESV scheme 

(Level 3 system after 

Mellor&Yamada) 

form a linear 

algebraic system 

External parameters: 

e (=TKE), S2, N2, 

scalar variances

The system was 

solved analytically →



TKE-Scalar Variance Closure Scheme

FM and FH are functions of  τ2S2 and τ2N2, or  τ2S2 and Ri = N2/S2

(τ=l/e1/2 is the turbulence time scale) – “stability functions”

They are merely the notation used to represent the solution of system of linear 

equations for scalar-flux and Reynolds-stress components in a compact form.

The stability functions of the level 3 system and the level 2.5 system differ 

(different set of arguments, different functional form – “other stability 

functions”). 

𝑤′𝜃′ = −𝐹𝐻1 𝜏2𝑆2, 𝑅𝑖, 𝜃′2 𝜏𝑒
𝜕ഥ𝜃

𝜕𝑧
+𝐹𝐻2 𝜏2𝑆2, 𝑅𝑖 𝜏𝛽𝜃′2F3

H1KH

In the Level 3 system, the components of scalar fluxes are not down-gradient:



Potential temperature minus
its minimum value within the
PBL. Green curve shows
LES data (Mironov et al.
2000), orange – TKE scheme,
blue – TKESV scheme.

Mean Temperature 

TKE and TKESV Schemes 

vs. LES Data

Single-column testing: Dry Convective PBL

Enhanced mixing, counter-gradient heat transfer  



after Tompkins (2002)

SGS fluctuations of q and qs

(due to SGS fluctuations of T) 

result in fractional cloud 

cover 

Coupling with Statistical Cloud Scheme

PDF form is assumed

Parameters should be determined

→ cloud cover, cloud condensate = 

integrals over supersaturated part of PDF

For shallow cumuli regime (highly localized clouds) the skewness is very important!

Gaussian distribution works badly.      

clouds
Assumed PDF approach

Saturation deficit/excess

s = 𝑞𝑡 − 𝑞𝑠 𝑇𝑙



Coupling with Statistical Cloud Scheme

(Naumann et al., 2013)

First moment ҧ𝑠 is provided by the grid-scale equations

Second moment 𝑠′2 is computed from 𝜃𝑙′
2, 𝜃𝑙′𝑞𝑡

′ and 

𝑞𝑡
′2 provided by TKESV

Third moment 𝑠′3 is computed through its own 

transport equation

Double Gaussian distribution – very flexible, 

but expensive, if a joint PDF for 𝜃𝑙, 𝑞𝑡 and 𝑤 is assumed

For cloud representation the PDF of s = 𝑞𝑡 − 𝑞𝑠 𝑇𝑙 is sufficient

Still the DG PDF of 𝑠 requires 5 input parameters – too many

A three-moment (mean, variance, and skewness) statistical SGS cloud scheme

(Naumann et al., 2013); 5 parameters are reduced to 3 using LES findings

– a good compromise between flexibility 

and computational costs 



Coupling with Statistical Cloud Scheme

Turbulence in clouds – the buoyancy flux 
𝑔

𝑇0
𝑤′𝜃𝑣

′ , a very important source of TKE 

𝑤′𝜃𝑣
′ = 𝑤′ 𝜃 1 + 𝑅 − 1 𝑞𝑡 − 𝑅𝑞𝑙

′ = 𝐴𝑤′𝜃𝑙
′ + 𝐵𝑤′𝑞𝑡

′ + 𝐶𝑤′𝑞𝑙
′

In between 𝑤′𝑞𝑙
′ is unknown 

The linear interpolation with C corresponds to a Gaussian PDF, 

does not work in many situations, e.g. for cumulus type clouds

(𝐶 is small but 𝑤′𝜃𝑣
′ is dominated by 𝑤′𝜃𝑣

′
𝑐𝑙𝑜𝑢𝑑

) 

Use the parameterization of Naumann et al. (2013) of 𝑤′𝑞𝑙
′ as a function 

of s-skewness: 𝑆 =
𝑠′3

𝑠′2
ൗ3 2

The moments are provided by TKESV

𝐶 = 0

(𝑤′𝑞𝑙
′ = 0) 

𝐶 = 1
(𝑞𝑙 = 𝑞𝑡 − 𝑞𝑠 𝑇𝑙 everywhere → 𝑞𝑙

′ = 𝑞𝑡
′ − 𝑞𝑠

′ )



Single-column testing: BOMEX 



Regularization of the stability functions

Pathological behaviour of stability functions in non-stationary conditions 

The problem is well-known and is recognized to be associated with the truncation of 

equations (neglecting of the terms that are responsible for inhomogeneity and non-

stationarity).

The ways to handle it: either to regularize the solution (widely used, but too crude) 

or to regularize the equations (more mild and model-friendly).

Level 2.5: the problem is confined to growing turbulence (Helfand & Labraga, 1988)

→ for 
𝑒

𝑒2
< 1, re-insert into the algebraic equations the “transport” terms that would 

emulate what was neglected by the truncation.

Level 3: similarly for 
𝑒

𝑒2𝑝
< 1 – regularized stability functions reveal no pathological 

behavior (Machulskaya & Mironov, 2020)



Future Challenges 

• The base-line version of TKESV is implemented into the 

global 3d NWP ICON model, it was extensively tested, runs 

stably

• The advanced version (equation for 𝑠′3 + SGS clouds after 

Naumann et al. (2013)) is implemented and being tested

• Coupling with the microphysics (Schemann & Seifert, 2017)
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