The Two-Energies Turbulence Scheme and Length Scale Formulations

Ivan Bašták Ďurán (1), Mirjana Sakradzija (3,4),Stephanie Reilly (2,3), and Juerg Schmidli (2,3)

ECMWF¹, Goethe University Frankfurt², Hans Ertel Centre for Weather Research ³, Deutscher Wetterdienst⁴

2, Budget-Based Turbulence Length Scale Diagnostics

3, TKE scheme in IFS

- Separate modelling of turbulence and clouds in Atmospheric Boundary Layer (ABL) causes inconsistencies.
- Unified parameterization of turbulence and clouds should improve the representation of interactions and transition of processes.
- A parameterization based on two prognostic turbulence energies and the Assumed Probability Density Function (APDF) approach for modelling both turbulence and clouds is a possible solution.

Local down-gradient turbulent diffusion

$$\overline{u'w'} = -\mathbf{K}_{\mathbf{M}}\frac{\partial u}{\partial z}, \quad \overline{v'w'} = -\mathbf{K}_{\mathbf{M}}\frac{\partial v}{\partial z}, \\ \overline{\theta'_{l}w'} = -\mathbf{K}_{\mathbf{H}}\frac{\partial \theta_{l}}{\partial z}, \quad \overline{q'_{t}w'} = -\mathbf{K}_{\mathbf{H}}\frac{\partial q_{t}}{\partial z},$$

Turbulent diffusion coefficients in TKE scheme

 $\mathbf{K}_{\mathbf{M}} = \frac{\nu^4}{C_{\epsilon}} \chi_3(Ri_f^*) \sqrt{e_k} L, \quad \mathbf{K}_{\mathbf{H}} = C_3 \frac{\nu^4}{C_{\epsilon}} \phi_3(Ri_f^*) \sqrt{e_k} L$

Turbulent diffusion coefficients in TKE scheme

 $\mathbf{K}_{\mathbf{M}} = \frac{\nu^4}{C_{\epsilon}} \chi_3(Ri_f^*) \sqrt{e_k} L, \quad \mathbf{K}_{\mathbf{H}} = C_3 \frac{\nu^4}{C_{\epsilon}} \phi_3(Ri_f^*) \sqrt{e_k} L$

► TKE - measure of turb. intensity

Turbulent diffusion coefficients in TKE scheme

 $\mathbf{K}_{\mathbf{M}} = \frac{\nu^4}{C_e} \chi_3(Ri_f^*) \sqrt{e_k} L, \quad \mathbf{K}_{\mathbf{H}} = C_3 \frac{\nu^4}{C_e} \phi_3(Ri_f^*) \sqrt{e_k} L$

► TKE - measure of turb. intensity

length scale - scale of the problem

Turbulent diffusion coefficients in TKE scheme

 $\mathbf{K}_{\mathbf{M}} = \frac{\nu^4}{C_e} \chi_3(Ri_f^*) \sqrt{e_k} L, \quad \mathbf{K}_{\mathbf{H}} = C_3 \frac{\nu^4}{C_e} \phi_3(Ri_f^*) \sqrt{e_k} L$

► TKE - measure of turb. intensity

- length scale scale of the problem
- stability functions influence of stratification

Turbulent diffusion coefficients in TKE scheme

 $\mathbf{K}_{\mathbf{M}} = \frac{\nu^4}{C_e} \chi_3(Ri_f^*) \sqrt{e_k} L, \quad \mathbf{K}_{\mathbf{H}} = C_3 \frac{\nu^4}{C_e} \phi_3(Ri_f^*) \sqrt{e_k} L$

TKE - measure of turb. intensity

length scale - scale of the problem

stability functions - influence of stratification

closure constants

 ν - free parameter, C_3 - inverse Prandtl number at neutrality, Ri_f^* - stability parameter in the form of flux Richardson number: $Ri_f \equiv \left(\frac{g}{\partial_V}\overline{\theta_V'w'}\right)/(\overline{u'w'}\frac{\partial_u}{\partial z} + \overline{v'w'}\frac{\partial_v}{\partial z}\right)$

Prognostic TKE equation

$$\begin{aligned} \frac{d\mathbf{e}_{\mathbf{k}}}{dt} &= \frac{\partial}{\partial z} \left(K_{\mathbf{e}_{\mathbf{k}}} \frac{\partial \mathbf{e}_{\mathbf{k}}}{\partial z} \right) + I + II - \epsilon_{\mathbf{k}}, \\ \mathbf{e}_{\mathbf{k}} &\equiv \frac{\overline{u'u'} + \overline{v'v'} + \overline{w'w'}}{2} \quad \text{-Turbulence Kinetic Energy (TKE)}, \\ I &\equiv -\overline{u'w'} \frac{\partial u}{\partial z} - \overline{v'w'} \frac{\partial v}{\partial z} \quad \text{-Shear term,} \\ II &\equiv \frac{g}{\theta_{v}} \overline{\theta'_{v}w'} = E_{q_{t}} \overline{q'_{t}w'} + E_{\theta_{l}} \overline{\theta'_{l}w'} \quad \text{-Buoyancy term} \\ \epsilon_{\mathbf{k}} &\equiv \frac{2 \, \mathbf{e}_{\mathbf{k}}}{\tau_{\mathbf{k}}} \quad \text{-Dissipation term} \end{aligned}$$

 K_{e_k} - turb. exchange coefficients for e_k ; τ_k and τ_s - are dissipation time scales; E_{q_t} and E_{θ_l} are cloud-dependent weights.

CECMWF

The two-energies turbulence scheme (2TE)

$$\begin{aligned} \frac{d\mathbf{e}_{\mathbf{k}}}{dt} &= \frac{\partial}{\partial z} \left(K_{e_{k}} \frac{\partial \mathbf{e}_{\mathbf{k}}}{\partial z} \right) + \boxed{I + II - \frac{2 \, \mathbf{e}_{\mathbf{k}}}{\tau_{k}}} \\ \frac{d\mathbf{e}_{\mathbf{s}}}{dt} &= \frac{\partial}{\partial z} \left(K_{e_{\mathbf{s}}} \frac{\partial \mathbf{e}_{\mathbf{s}}}{\partial z} \right) + \boxed{I - \frac{2 \, \mathbf{e}_{\mathbf{s}}}{\tau_{s}}}, \\ \mathbf{e}_{\mathbf{s}} &\equiv e_{k} + \frac{E_{q_{t}} \overline{q_{t}^{\prime 2}}}{2 \frac{\partial q_{t}}{\partial z}} + \frac{E_{\theta_{I}} \overline{\theta_{I}^{\prime 2}}}{2 \frac{\partial \theta_{I}}{\partial z}}, \\ Ri_{f}^{TE} &= \frac{\mathbf{e}_{\mathbf{s}} - \mathbf{e}_{\mathbf{k}}}{\mathbf{e}_{\mathbf{s}} + \mathbf{e}_{\mathbf{k}} \left(\frac{C_{\mathbf{4}}}{2 \, C_{\mathbf{3}}} - 1 \right)} \end{aligned}$$

 ${\cal K}_{e_{\rm S}}$ - turb. exchange coefficients for $e_{\rm S};\,\tau_{\rm S}$ - dissipation time scale

APDF method

C - Cloud fraction, $\theta_{\scriptscriptstyle V}$ - virtual potential temperature

APDF method

estimate PDF from model state

PDF shape given

C - Cloud fraction, θ_V - virtual potential temperature

APDF method

estimate PDF from model state

PDF shape given

analytical integration of PDF

C - Cloud fraction, θ_V - virtual potential temperature

2TE+APDF (1)

- the buoyancy term, II, is computed via APDF
- ► The stability parameter is computed from local gradients (Ri_f^{GR}) and turbulence energies: $Ri_f^* = C_{Ri_f} Ri_f^{GR} + (1 - C_{Ri_f}) Ri_f^{TE}$
- Turbulence exchange coefficient for TOMs:

$$K_{e_k} = K_{e_s} = \left(C_{e_k}\overline{w'^2} + C_{\theta_s}\frac{g}{\theta_0}\overline{w'\theta'_s}\tau_k\right)\tau_k,$$

$$\overline{w'^3} = -K_{e_k} \frac{\partial \overline{w'^2}}{\partial z}$$

 C_{e_k} , C_{θ_s} , and C_{Ri_f} - closure constants, $Ri_f^{GR} \equiv Ri\frac{K_H}{K_M}$ - computed from conventional gradient Richardson number, $w'\theta'_s$ turbulent flux of the entropy potential temperature (Marquet and Geleyn, 2014)

2TE+APDF (2)

Canuto et al. (2007) - dry case:

$$\overline{w'^{3}} = -A_{1} \frac{\partial \overline{w'^{2}}}{\partial z} - A_{2} \frac{\partial \overline{w'\theta'}}{\partial z} - A_{3} \frac{\partial \overline{\theta'^{2}}}{\partial z}$$

$$A_{1} = \left(a_{1} \overline{w'^{2}} + a_{2} \frac{g}{\theta_{0}} \tau \overline{w'\theta'}\right) \tau$$

► simplification for moist 2TE+APDF:

$$A_2 = A_3 = 0$$
, $\overline{w'\theta'} = \overline{w'\theta'_s}$

2TE+APDF (3)

► Turbulence length scale:

$$L = \frac{(C_{\kappa} C_{\epsilon})^{\frac{1}{4}}}{C_{\kappa}} \frac{\kappa z}{1 + \frac{\kappa z}{\lambda_{m}}} \left[\frac{1 + \exp\left(-a_{m}\sqrt{\frac{z}{H_{ab1}}} + b_{m}\right)}{\beta_{m} + \exp\left(-a_{m}\sqrt{\frac{z}{H_{ab1}}} + b_{m}\right)} \right],$$

$$H_{abl} = C_{ablh} \int_{z} L_{up} dz,$$

$$\Delta \theta_{s} > 0: \beta_{m} = 0, \quad \Delta \theta_{s} \le 0: \beta_{m} \ne 0$$

$$\Delta \theta_{s} = \theta_{s}(z = 1.5H_{abl}) - \theta_{s}(z = 0)$$

 $\kappa = 0.4$ is the von Kármán constant; H_{ab1} is the ABL height; L_{up} is upward par of the non-local length scale (Bougeault and Lacarrere, 1989); a_m , b_m , β_m , and λ_m are shape constants; C_{ablh} and C_K are closure constants.

2TE+APDF (4)

▶ $\beta_m \sim \text{entrainment}$

• $\Delta \theta_s \sim \text{entrainment}$

Marquet and Bechtold (2021)

ICON experiments

- Two modes:
 - Single Column Mode (SCM) : Torus grid (8x8), no dynamics
 - Cloud Resolving Mode (CRM) : Torus grid(100×100, 2.5km), with dynamics

Two setups:

- NWP : ICON operational turbulence and convection scheme
- > **2TE+APDF** : Two-energies scheme with APDF (without convection par.)

ICON SCM and ICON CRM-PER

ICON experiments (2)

MicroHH (van Heerwaarden et al., 2017) LES is used as reference.

Four idealized cases:

- ARM: Continental shallow,
- BOMEX: Non-precipitating trade cumulus,
- DYCOMS-II: Stratocumulus,
- GABLS(1): weakly stable stratification

Vertical profiles after 8 hours if integration

ARM

—	LES
—	SCM NWP
—	SCM 2TE+APDF
	CRM NWP
	CRM 2TE+APDF

Vertical profiles after 8 hours if integration

—	LES
—	SCM NWP
—	SCM 2TE+APDF
	CRM NWP
	CRM 2TE+APDF

Vertical profiles after 8 hours if integration

DYCOMS-II

—	LES
	SCM NWP
	SCM 2TE+APDF
	CRM NWP
	CRM 2TE+APDF

Vertical profiles after 8 hours if integration

GABLS(1)

Evolution of TKE

Real case - 13.06.2021 : cloud streets

Horizontal cross section at 1900 m

(b)

LES

2TE+APDF

14.2

14.4

NWP

Real case - 13.06.2021 : cloud streets

Horizontal cross section at 1900 m

LES

Real case - 13.06.2021 : cloud streets

Horizontal cross section at 1900 m

LES

NWP

Real case - 13.06.2021 : cloud streets

Horizontal cross section at 1900 m

LES

Real case - 13.06.2021 : cloud streets Vertical cross section

LES

NWP

Vertical velocity $[ms^{-1}]$

2TE+APDF

Real case - 13.06.2021 : cloud streets Vertical cross section

LES

NWP

2TE+APDF

20/39

29.06.2021 14:00 and 15:00 - cold pool Horizontal cross sections - 10 m

Summary

- ▶ 2TE+APDF scheme is implemented in full ICON code
- based on selected cases, the 2TE+APDF scheme can be considered as an alternative to the operational turbulence and shallow convection scheme in ICON
- 2TE+APDF scheme improves the coupling with dynamics, which is beneficial for the modeling of coherent flow structures in the ABL

Budget-Based Turbulence Length Scale Diagnostics

- More objective reference for turbulence length scale, L, is required, especially in the gray zone of turbulence, where the cross-scale transfer of TKE is not negligible.
- L can be estimated from the TKE or scalar variance budget using high resolution LES data (Bastak Duran et al. 2020).

L diagnostics:

Based on TKE:

$$L_{C,e_k} = rac{(e_k)^{rac{3}{2}}}{\widetilde{\epsilon}} C_{\epsilon}$$

where $\tilde{\epsilon}$ is the **effective molecular dissipation rate**, C_{ϵ} and C_{p} are closure constants, and e_{k} is the TKE.

Based on scalar variances:

$$L_{C,\phi} = (e_k)^{\frac{1}{2}} \frac{\overline{\phi'^2}}{\widetilde{\epsilon_{\phi}}} \frac{C_{\epsilon}}{C_{\rho}}$$

where $\phi \in \{q_t, \Theta_l\}$, and $\widetilde{\epsilon}_{\phi}$ is the effective molecular dissipation rates of the variance of q_t and

 Θ_I .

Five idealized LES cases (Micro-HH LES model):

Case	Domain Size (km ³)	Grid Size (m ²)
ARM	12.8×12.8×4.4	12.5×12.5×34.4
BOMEX	12.8×12.8×3.0	12.5×12.5×23.4
RICO	12.8×12.8×1.5	12.5×12.5×2.93
DYCOMS-II	12.8×12.8×4.4	12.5×12.5×31.25
GABLS1	0.4×0.4×0.4	12.5×12.5×0.78

The scale dependence is analysed using a coarse graining method of the LES domain.

Coarse graining method

The scale dependence is analysed using a coarse graining method of the LES domain.

Length scale formulations

Blackadar (1962) (L_B) : $I_B = \frac{k \cdot z}{1 + \frac{k \cdot z}{\lambda}}$, Bastak Duran et al. (2018) (L_{BD1}) :

$$L_{BD1} = \frac{\left(C_{K} \cdot C_{\epsilon}\right)^{\frac{1}{4}}}{C_{K}} \frac{k \cdot \mathbf{z}}{1 + \frac{k \cdot \mathbf{z}}{\lambda_{m}} \left[\frac{1 + \exp\left(-a_{m} \cdot \sqrt{\frac{\mathbf{z}}{H_{abl}}} + b_{m}\right)}{\beta_{m} + \exp\left(-a_{m} \cdot \sqrt{\frac{\mathbf{z}}{H_{abl}}} + b_{m}\right)}\right]},$$

Nakanishi and Niino (2009) (L_{NN}):

$$\frac{1}{L_{NN}} = \left(\frac{1}{L_{Surf}} + \frac{1}{L_T} + \frac{1}{L_{Bouy}}\right).$$
ECMWF

Length scale formulations (2)

Bougeault and Lacarrere (1989) (L_{BL}) :

L

$$BL = \frac{\left(C_{K} C_{\epsilon}\right)^{\frac{1}{4}}}{C_{K}} \left(L_{up} \cdot L_{down}\right)^{\frac{1}{2}},$$

$$\int_{z}^{z+L_{up}} \frac{g}{\theta_{vr}} \left(\theta_{v}(z) - \theta_{v}(z')\right) dz' = \mathbf{e_{k}}(z),$$

$$\int_{z-L_{down}}^{z} \frac{g}{\theta_{vr}} \left(\theta_{v}(z') - \theta_{v}(z)\right) dz' = \mathbf{e_{k}}(z)$$

Length scale formulations (3)

Honnert et al. (2021) (L_{H21}):

$$\begin{split} \mathcal{L}_{H21} &= \min(\mathcal{L}_{R}, \alpha \cdot \mathcal{L}_{LES}), \\ \mathcal{L}_{LES} &= (\Delta x \cdot \Delta y)^{\frac{1}{2}} \\ \mathcal{L}_{R} &= \frac{(C_{K} C_{\epsilon})^{\frac{1}{4}}}{C_{K}} \left(\frac{\mathcal{L}_{Rup}^{-\frac{2}{3}} + \mathcal{L}_{Rdown}^{-\frac{2}{3}}}{2} \right)^{-\frac{3}{2}}, \\ &\int_{z}^{z+\mathcal{L}_{Rup}} \frac{g}{\theta_{vr}} \left(\theta_{v}(z) - \theta_{v}(z') + \mathbf{C}_{0} \cdot \sqrt{\mathbf{e}_{k}} \cdot \sigma(z') \right) \, dz' = \mathbf{e}_{k}(z), \\ &\int_{z-\mathcal{L}_{Rdown}}^{z} \frac{g}{\theta_{vr}} \left(\theta_{v}(z) - \theta_{v}(z') + \mathbf{C}_{0} \cdot \sqrt{\mathbf{e}_{k}} \cdot \sigma(z') \right) \, dz' = \mathbf{e}_{k}(z), \end{split}$$

Vertical profiles

Normalized (by $H_{\rm abl}$) RMSE

$$\text{RMSE}_{n} = \sqrt{\frac{1}{n_{z} n_{t}} \sum_{j=1}^{j=n_{t}} \sum_{i=1}^{z=n_{z}} \left(\frac{L_{F}(z_{i}, t_{j}) - L_{D}(z_{i}, t_{j})}{H_{\text{abl}}}\right)^{2}},$$

 z_i is the height of the *i*-th model level, n_z is number of model levels in the ABL, t_j is the time after *j* time steps, n_t is number of time steps, L_F is an algebraic length scale, L_D is diagnosed length scale.

Normalized RMSE

Three-component score

Amplitude:

$$\mathbf{A} = \frac{1}{n_t} \sum_{j=1}^{j=n_t} \left(L_F P(t_j) - L_D P(t_j) \right),$$

$$L_F P = \frac{1}{H_{abl}^2} \int_{z=0}^{z=H_{abl}} L_F(z) dz, \qquad L_D P = \frac{1}{H_{abl}^2} \int_{z=0}^{z=H_{abl}} L_D(z) dz,$$

Peak location and magnitude:

$$S_{I} = \frac{1}{n_{t}} \sum_{j=1}^{j=n_{t}} \frac{z_{F,\max}(t_{j}) - z_{D,\max}(t_{j})}{H_{abl}},$$

ECMWF
$$S_{m} = \frac{1}{n_{t}} \sum_{j=1}^{j=n_{t}} \frac{L_{F,\max}(t_{j}) - L_{D,\max}(t_{j})}{H_{abl}},$$

Three-component score

Summary

- L can be estimated from LES data using budget based diagnostic (Bastak Duran et al. 2020).
- Typical shape of L: proportional to the distance from surface near surface, peak in the ABL, asymptotic value (positive or zero) at the top of the ABL.
- ► *TKE*-based *L* formulations show better performance.

TKE scheme in IFS

TKE scheme in IFS

▶ ...

- ▶ TKE scheme from ARPEGE physics (CBR scheme) already implemented
- Calibration in IFS is required:
 - Under-estimation of turbulent mixing in free atmosphere particularly tropical jet region
 - Under-estimation of Stratocumulus cloudiness

TKE scheme in IFS

TKE in free atmosphere

- ► TKE source terms are computed using TKE from previous time step: Shear term = $K_M \left(\mathbf{e}_k^- \right) \cdot S^2$, Buoyancy term = $K_H \left(\mathbf{e}_k^- \right) \cdot N^2$
- ▶ Problem with temporal discretization: $e_k^-=0 \Rightarrow e_k^+=0$
- ► Solution: assume **TKE equilibrium** to estimate the TKE source terms: Shear term = $K_M(\tilde{\mathbf{e}_k}) \cdot S^2$, Buoyancy term = $K_H(\tilde{\mathbf{e}_k}) \cdot N^2$

TKE scheme in IFS

TKE in free atmosphere (change in RMSE of wind vector)

Original implementation

Equilibirum TKE source terms

Thank you for your attention!

