Momentum transport across scales in complex cloudy atmospheres

Louise Nuijens, Alessandro Savazzi, Vishal Dixit, Pier Siebesma, Wim de Rooy

ECMWF Annual Seminar September 12, 2022

Flowers in the wind, by Alessandro Savazzi

Myriad of shallow convective clouds across the North Atlantic

Multi-scale flows in the presence of shallow cloud organization patterns

> 100 km

shallow mesoscale convective system

3000 km

Turbulence and shallow convection parameterized in weather models

parameterized processes

> 100 km

3000 km

From idealised to realistic large-eddy simulation run in 'weather' mode **ES** 150 km 20 km ↑ 🗖 LES

resolved in Large Eddy Simulation

> 100 km

3000 km

What have we learned about shallow convective momentum transport?

- 1. Down-gradient and up-gradient momentum transport since the 90's
- 3. Link to wind biases in the IFS in the trades

2. Convective momentum transport in Large Eddy and Storm Resolving Models: relevant scales

What have we learned about shallow convective momentum transport?

- 1. Down-gradient and up-gradient momentum transport since the 90's
- 3. Link to wind biases in the IFS in the trades

There is momentum to be gained at (sub)mesoscales

2. Convective momentum transport in Large Eddy and Storm Resolving Models: relevant scales

Mass flux does not suffice (environmental flux is significant) and pressure gradients matter for in-cloud momentum

Brown (1999): BOMEX on 6.4 km x 6.4 km x 3.0 km, $\Delta x = 100m$ **Zhu (2005):** BOMEX/RICO on 16 × 16 km x 3 km, $\Delta x = 25m$ **Schlemmer et al (2017):** RICO on 51.2 km × 51.2 km × 5 km, $\Delta x = 25m$ **Larson et al (2019):** RICO on 51.2 km × 51.2 km × 5 km, $\Delta x = 100m$

A layer of upgradient momentum flux is created by non-local transport through a zonal wind jet

Brown (1999): BOMEX on 6.4 km x 6.4 km x 3.0 km, $\Delta x = 100$ m **Zhu (2005)**: BOMEX/RICO on 16×16 km x 3 km, $\Delta x = 25$ m Schlemmer et al (2017): RICO on 51.2 km \times 51.2 km \times 5 km, $\Delta x = 25$ m **Larson et al (2019):** BOMEX on 25.6 km \times 25.6 km, $\Delta x = 100$ m

Deeper layer of upgradient flux in open-boundary ICON-LEM hindcasts

Dixit et al (2020): NARVAL with ICON-LEM on 100 km x 100 km x > 5 km, $\Delta x = 150$ m

Simulations by Matthias Brueck and Daniel Klocke

Buoyancy generation of flux largely compensated by vertical pressure perturbations

Dixit et al (2020): NARVAL with ICON-LEM on 100 km x 100 km x > 5 km, $\Delta x = 150$ m

$$BR = \frac{g}{\overline{T_{v}}} \overline{u'T_{v}'} - \frac{u'}{\overline{\rho}} \frac{\partial p'}{\partial z}$$

Buoyancy

Vertical Pressure Gradient

Upgradient flux generated by horizontal convergence of flux by wind (perturbations)

Dixit et al (2020): NARVAL with ICON-LEM on 100 km x 100 km x > 5 km, $\Delta x = 150$ m

Buoyancy residue **S**hear Horizontal Pressure Grad Vertical transport Horizontal transport

EUREC4A 's rich data set and hierarchy of model simulations are used to explore momentum transport by different flows

- * **JOANNE: circular dropsonde arrays** (85 circles, 13 flight days): meso-scale divergence, pressure gradients and geowind
- * French ATR Safire aircraft / UAVs: profiles of in-situ turbulence

Supportive evidence of upgradient momentum transport and heterogeneity in flux along flight tracks, including near cloud tops

actual wind shear > shear in geo-wind

Nuijens et al (2022, in print for QJRMS)

Supportive evidence of upgradient momentum transport and heterogeneity in flux along flight tracks, including near cloud tops

LEM and SRM hindcasts/climatological simulations of a ten-day EUREC4A period

February 4, 2020 - 14 UTC

EUREC4A-MIP / <u>eurec4a.eu</u>

February 4, 2020 - 14 UTC

EUREC4A-MIP / <u>eurec4a.eu</u>

£ .

HARMONIE

February 4, 2020 - 14 UTC

EUREC4A-MIP / <u>eurec4a.eu</u>

£ .

As trade-winds strengthen, convection drives strong (upgradient) momentum flux

As trade-winds strengthen, convection drives strong (upgradient) momentum flux

Large anomalies in wind speed in surface layer and near cloud tops

Feb 3, 14UTC

Mesoscale flows important for upgradient transport and acceleration near cloud tops, but also for generating flux in the mixed-layer

 $50\% \le 2.5$ km, 50% > 2.5 km

(Sub)mesoscales can contribute up to 50% of the momentum flux in the cloud layer

Link to bias in zonal winds?

Savazzi, Nuijens, Sandu, George and Bechtold (ACP, accepted)

Convective, mesoscale flows create a deeper layer of easterly flow

Savazzi, Nuijens, Sandu, George and Bechtold (ACP, accepted)

Savazzi, Nuijens, Sandu, George and Bechtold (ACP, accepted)

Summary

In larger domain LEM with open boundary conditions and varying large-+ scale tendencies, horizontal transport and generation of momentum flux gains importance: more upgradient transport than perhaps appreciated

Summary

- In larger domain LEM with open boundary conditions and varying large-+ scale tendencies, horizontal transport and generation of momentum flux gains importance: more upgradient transport than perhaps appreciated
- Observations suggest convection enhances wind shear in the cloud layer, + significant momentum flux near cloud top and importance of wind variance on scales 5 - 20 km

shear / s⁻¹

Summary

- In larger domain LEM with open boundary conditions and varying large-+ scale tendencies, horizontal transport and generation of momentum flux gains importance: more upgradient transport than perhaps appreciated
- Observations suggest convection enhances wind shear in the cloud layer, + significant momentum flux near cloud top and importance of wind variance on scales 5 - 20 km
- At times of vigorous shallow convection (gravel, flowers congestus) up to + half the momentum flux is carried by scales > 2.5 km (in the cloud layer, but also the sub-cloud layer)
- Convection accelerates winds near the surface, but also near cloud tops.

shear / s⁻¹

Backup slides

The maximum friction is introduced below cloud base

$$\frac{\partial \overline{u'w'}}{\partial t} = -\overline{w'^2}\frac{\partial \overline{u}}{\partial z} + \underbrace{\frac{g}{\theta_{vs}}}_{\text{Turb Prod}} + \underbrace{\frac{g}{\theta_{vs}}}_{\text{Buoy}}$$

Buoyancy generation of flux largely compensated by vertical pressure perturbations

Dixit et al (2020): NARVAL with ICON-LEM on 150 km x 150 km x xx km, $\Delta x = 125$ m

B

VP

34

Mass flux approach does not suffice (environmental flux is significant) and pressure gradients matter for in-cloud momentum

Dixit et al (2020): NARVAL with ICON-LEM on 150 km x 150 km x xx km, $\Delta x = 125$ m

Mesoscale momentum transport important for upgradient transport and acceleration near cloud tops, but also in the mixed-layer

Mesoscale momentum transport important for upgradient transport and acceleration near cloud tops, but also in the mixed-layer

Figures by: Alessandro Savazzi

February 4, 2020 - 14 UTC

no shallow convective momentum transport

EUREC4A-MIP / <u>eurec4a.eu</u>

February 4, 2020 - 18 UTC

