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1. Relating ABL experimental work and model parameterizations.

Related to the surface energy budget and its closure in heterogeneous terrain:

* Convenient surface boundary condition in models: closure of the surface energy budget.

* Experimentally closure is not happening: best hope 10%, usual 20%, complex 40%.

* Observed fluxes have large uncertainties.

* Surface heterogeneities induce lateral transport.

* If non-resolved, they should be considered in the SEB, especially if a residual method is used.

Related to surface variability:
* Different land uses, topography (slopes, gentle topography, complex terrain) and presence of canopies.
* It induces changes in data at small (subgrid) scales: a challenge for initialisation and validation.

Related to the similarity theory:

* It is customarily applied at the first flux model level.

* It was derived (60’s-70’s) using profiles of some tens of meters on seemingly homogeneous areas.

* If high vertical resolution is used near the surface for non-homogeneous terrain, does ST still hold there?
* Well-behaved stability functions are used for momentum and temperature, less clear for matter.




Surface Energy Budget:

observations vs models

oT N oT 1 dRn ow'T" 9G*

at ”a_x _pCp 0z 0z 0z
+ S$*+ B* + LE* + Ot*

Rn+H+LE+G=-TT-A+S+B+0t=Imb

Model:

layer of infinitessimal depth
S=B=0,

Small timestep TT~0

No instrumental uncertainty Ot~0
No subgrid variability A=0

Rn+H+LE+G=0 Rn+ H+LE+

N2

Observations:
Rn " H
K K 5
NJ NJ &
_)A
T,| LE cu,T I,

term of the energy balance  error energy
equation in % in Wm>
latent heat flux  [F 5-20 20-50
(carefully corrected)

sensible heat flux H 10-20 15-30
net radiation Rn 10-20 50-100
ground heat flux 50 25
storage term ' ?

LIAISE semi-arid site



Observed SEB imbalance and model surface wrong representation:

2 years of data (2009 & 2010) in a drip-irrigated vineyard in the Eastern Ebro valley. Monthly averages of
the 12-15 UTC values of surface fluxes are compared to the corresponding ECMWEF values.
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Hectometer-scale advection

The UIB Campus is flat,
1 km-wide,with buildings
in between vegetated spaces.

In 2016 a SEB station plus 9
gradient stations were

deployed and a thermal camera
was flown providing estimates
of LST at the 10cm-scale.

It was seen that the daytime
imbalance correlated well with
hectometer-scale estimates of
thermal advection.

Garcia-Santos et al, IEEE, 2018
Simo et al, JGR, 2019
Mauder et al, BLM. 2020
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Hectometer-scale advection
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1. Relating ABL experimental work and model parameterizations.

Related to the surface energy budget and its closure in heterogeneous terrain:

* Convenient surface boundary condition in models: closure of the surface energy budget.

* Experimentally closure is not happening: best hope 10%, usual 20%, complex 40%.

* Observed fluxes have large uncertainties.

* Surface heterogeneities induce lateral transport.

* If non-resolved, they should be considered in the SEB, especially if a residual method is used.

Related to surface variability:
* Different land uses, topography (slopes, gentle topography, complex terrain) and presence of canopies.
* It induces changes in data at small (subgrid) scales: a challenge for initialisation and validation.

Related to the similarity theory:

* It is customarily applied at the first flux model level.

* It was derived (60’s-70’s) using profiles of some tens of meters on seemingly homogeneous areas.

* If high vertical resolution is used near the surface for non-homogeneous terrain, does ST still hold there?
* Well-behaved stability functions are used for momentum and temperature, less clear for matter.




Variability in flat terrain
For station pairs
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VErAETTG T [T S Vertical profiles made with a multicopter UAS
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Figure 1. (Top left): topography of the area surrounding Rodeser Berg at a resolution of 90 m (approx.
35 km E-W x 25 km N-S); (top right): detailed topography and terrain uses at Rodeser Berg (6 km e g e g
x 6 km), green represents woods; (bottom left): topography at a resolution of 90 m in a larger area
5 . Case sl-av s2-av s3-av s4-av s5-av sl-ec s2-ec s3-ec s4-ec s5-ec |av-ec
(approx. 60 km E-W x 80 km N-S); (bottom right): the same but at a resolution of 9 km as seen by the = N oon
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Cuxart, Wrenger, Matjacic & Mahrt, Atmosphere, 2019



Slope flows
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Simple relation between angle, speed and heat flux
(assuming depth of the slope flow is the depth of turbulence)
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Forest canopy

Forest on a slope

Model of forest by inspection
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Wrenger & Cuxart, 2023 (in prep)
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1. Relating ABL experimental work and model parameterizations.

Related to the surface energy budget and its closure in heterogeneous terrain:

* Convenient surface boundary condition in models: closure of the surface energy budget.

* Experimentally closure is not happening: best hope 10%, usual 20%, complex 40%.

* Observed fluxes have large uncertainties.

* Surface heterogeneities induce lateral transport.

* If non-resolved, they should be considered in the SEB, especially if a residual method is used.

Related to surface variability:
* Different land uses, topography (slopes, gentle topography, complex terrain) and presence of canopies.
* It induces changes in data at small (subgrid) scales: a challenge for initialisation and validation.

Related to the similarity theory:
It is customarily applied at the first flux model level.
It was derived (60’s-70’s) using profiles of some tens of meters on seemingly homogeneous areas.
If high vertical resolution is used near the surface for non-homogeneous terrain, does ST still hold there?
Well-behaved stability functions are used for momentum and temperature, less clear for matter.




MOST: uncertainties of the method
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MOST: momentum flux very close to the surface in complex terrain

Uy
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u* estimated with wind at 2m and a given
value of z0.

Most values have errors within the inherent
uncertainty of the method.

Tested for three flat locations surrounded by
significant topography.

One level vs two levels of wind

ECUIB ME SDD P20% P50%

u. short -0.012 0.048 |75.21 98.49
us 2lev 0.009 0.058 |64.28 96.14

- Two levels are almost as good at the
50% range or relative error and do
not need the zO parameter




MOST: Sensible heat flux using two levels of T
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MOST: Latent heat flux using two levels of q

The hypotesis
Kn=Kjq is not
fulfilled in our
data bases in a
general manner.
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Concluding remarks

On the SEB:
* direct comparison of experimental and models values must be made with care
* subgrid surface variability induces motions involving significant energy exchanges

On surface variability:
* at the hectometer scale, different land uses may induce T changes of the order of 1 K
* on hilly terrain, at the km scale, differences can be large for wind and T
* slope flows provide more organized structures and lesser effect of the small-scale features
* tall canopies need the prescription of L(z), perhaps a physiographic field.
* the position relative to nearby important topographical features results in very large differences.

On similarity theory (daytime, using two observed levels of T and q):
* expressions for u* and H work well with data taken at 2m.
* in the case of large LE and insolation, H seems to need a different stability function.
* KntKg, the mixing efficiency of water diminishes as the surface becomes drier.
* over dry soils, local advection may be playing an important role.
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