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summary of introduction
• lower atmosphere, upper ocean vary on different timescales


• O-A surface fluxes destabilize atmospheric boundary layer


• convection “connects” boundary layer and lower free troposphere


• tropical convection initiates teleconnections



SST drift in forecast models
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}my focus today
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diagnosing mean state SST drift 

∂SST/∂t ∼ Qnet + ocnproc

SST drift can arise from drift in net surface 
heating (Qnet) or ocean processes:
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surface flux vs ocean dynamics for SST drift

fluxes drive driftocean drives drift

• large variety of SST drift sources across models


• ocean sources of drift:  initialization shock, model biases, insufficient 
observations for initialization?

as determined by a “balance factor” that compares RMSE of each time series (Halkides et al. 2015)



model biases that contribute to SST drift

• erroneous (de)stabilization of water column

• surface heating 

• surface freshening


• erroneous momentum flux across air-sea interface

• surface winds

• representation of surface momentum flux:  bulk parameterization, 

wave effects

• representation of ocean mixing:  affects surface currents, MLD



prospects for improvement



S2S ocean output variables to identify sources of bias

• SST:  sea surface temperature

• SSH:  sea surface height

• SSS:  sea surface salinity

• u, v surface currents

• MLD:  mixed layer depth

• H300: 0-300m ocean heat content

• T20D:  20C isotherm depth

• sea ice concentration

Ben Webber, Eliza Karlowska; U. East Anglia 
Chris Roberts; ECMWF 

Michael Jacox, NOAA PSL 
Ángel Muñoz, Columbia/IRI 
Dillon Amaya, NOAA PSL 
Juliana Dias, NOAA PSL



future directions: a coupled observing strategy?

“Whole column” approach to measuring 
the upper ocean and lower atmosphere 
in process studies.


Sustained colocated, synchronous 
measurements of the tropical upper 
ocean and lower atmosphere are 
needed to:


• advance process understanding


• improve process representation in 
climate and forecast models


• accelerate progress in coupled data 
assimilation for improved forecast 
reliability

leveraging ideas put forth by TPOS2020, OASIS, US CLIVAR Tropical Pacific Observing Needs Workshop, 
and the US CLIVAR Air-Sea Transition Zone Study Group
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measurements of the tropical upper 
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Summary

• ocean forecast skill is important for forecasting atmospheric phenomena, 
and for commercial activity planning.


• ocean simulation (model) and ocean state (nature) can both affect MJO 
forecast skill.


• identifying sources of ocean forecast errors is difficult when limited to 
only SST.


• newly available ocean output variables have the potential to improve 
ocean process understanding and representation in forecast models


