Improving the representation of supercooled liquid water in the HARMONIE-AROME model

Bjørg Jenny Kokkvoll Engdahl, MET-Norway

From Morrison et al. 2020

Clouds in numerical weather prediction models

ICE3 microphysics scheme

From Mascart and Bougeault, 2011

Figure 6.2: Diagram of the microphysical processes for mixed phase cloud in the present scheme.

Improve the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model, and downstream forecasts of atmospheric icing

Part I: Down the rabbit hole

Objective

WRF

Thompson

AROME ICE3

Objective

WRF Thompson

= ICE-T

AROME ICE3

Important processes

Important processes

Ice initiation: Stricter criteria for heterogeneous ice nucleation

Important cloud processes

Ice initiation: Stricter criteria for heterogeneous ice nucleation

Accretion of liquid water (cloud water/rain) by solid species

(snow/graupel): less efficient accretion

Important cloud processes

Ice initiation: Stricter criteria for heterogeneous ice nucleation

Accretion of liquid water (cloud water/rain) by solid species

(snow/graupel): less efficient accretion

Rain size distribution

Change in supercooled liquid water

c) Cloud droplets in CTRL

ICE-T

Change in supercooled liquid water

c) Cloud droplets in CTRL

Part II: Back to the surface

Real case simulations

Dec 1 2016 - Feb 28 2017

CTRL and ICE-T

2.5km grid spacing, 65 vertical levels, domain covering Norway, Sweden and parts of Finland

Observations of ice loads from Ålvikfjellet and Hardingnuten

More supercooled liquid water

Difference in supercooled liquid water between ICE-T and CTRL

e) Diff. in col. integrated values of SLW ICE-T - CTRL [g/kg/m^2]

a) Iceloads Ålvikfjellet Dec 1 2016 - March 1 2017

a) Iceloads Hardingnuten Dec 1 2016 - March 1 2017

Changed precipitation pattern

Difference in precipitation between ICE-T and CTRL

a) Diff. in total precipitation [mm], ICE-T - CTRL

Part III: Take-off!

Photo: shutterstock

14

Aircraft icing

Investigate the ICE-T's ability to predict aircraft icing

Compare modelled icing indices with pilot reports

Compare simulated atmospheric profiles of LWC and IWC with derived profiles from CloudSat-CALIPSO

Compare modelled LWP with similar values derived from AMSR-2

Pilot reports

111 total

12 FBL (light), 78 MOD (moderate), 21 SEV (severe)

Time, location, height interval, severity

Problem: Biased and subjective, no reports of no icing

Increased frequency of icing forecasts and severity

Higher detection rate

Icing cases detected: CTRL: 73 (66%), ICE-T: 83 (75%) Moderate and severe events: CTRL: 48% ICE-T: 62%

Neighbourhood

neighbourhood areas: 6, 56, 306, 756, 2756, and 6006km²

Thresholds: > 0% (any icing), 5%, 10% , 15%

Hit rate and icing forecast frequency

Increased hit rates and Icing forecast frequencies with ICE-T (dashed lines) compared with CTRL (solid lines)

Atmospheric profiles of liquid and ice

Vertical profiles of liquid (red lines) and ice (blue lines)

Satellite profiles from CloudSat-CALIPSO

Atmospheric profiles of liquid and ice (cloud only)

Vertical profiles of liquid (red lines) and ice (blue lines)

Satellite profiles from CloudSat-CALIPSO

b) Mean distribution of LWC and IWC (cloud only)

Average liquid water paths for the entire 3 month period for both simulations and satellite retrieved data from AMSR-2

Conclusions

Modified important processes

Leads to increased

- supercooled liquid water
- ice loads
- forecasts of icing

Better match

- ice loads
- hit rates
- satellite

Supercooled liquid water could still be underestimated

Shift in precipitation pattern

Thank you for your attention!

Photo: Ole Gustav Berg