Implementing double moment microphysics into the Unified Model

Paul Field

Ben Shipway, Adrian Hill, Kalli Furtado, Jonathan Wilkinson, Hamish Gordon, Annette Miltenberger, Robin Stevens, Dan Grosvenor, Kwinten Van Weverberg

Operation timeline o complexit	P approx. ohysics		'nd i _{Ce}		prognosed	
No cloudsi	Diagnostic rain	Prognosed total w T-dependent ice/lig	Prognosed lice	e pinh		'vumber and mass
1960	1970	1980	1990	2000	2010 لق	2020
Double mo iterature e	oment ir example	า ะS	Ferrier Meyers et al.	Cohard & Pinty	Milbrandt & Yau Seifert & Beheng Morrison & Getteln	

CASIM multi-moment microphysics scheme

hydrometeor species

Cloud droplets Rain <u>Cloud ice</u> Snow Graupel

5

prognostic moments

<u>Number</u>

Mass

[Optional 3rd prognostic]

Can be coupled to aerosol to represent CCN and INP. [UKCA, MURK, ARCL] [RA3 config uses a prescribed in-cloud number concentration]

Cloud AeroSol Interacting Microphysics

CASIM components in UM timestep

Not just about cloud microphysics ...

Boundary layer scheme (Lock et al. 2000)

uses buoyancy information to diagnose mixing profiles based on extensive LES results

Bimodal cloud fraction scheme (Van Weverberg et al. 2021 MWR)

uses TKE and hydrometeor information from model to work out how much water will condense

Tropical case study suite (Darwin). ~60 days from 1/21/2017- 3/17/2017 (0Z and 12Z simulation each day) dx=1.5km, domain ~1300kmx1300km, 36h simulation

UKV case study suite. 120 cases spread over 2017-2019 dx=1.5km stretching to 4.5km at the outer rim, domain ~1300kmx1300km, 36h simulation

Configurations shown

	Scientifically similar single moment		Double moment		
			Set incloud cdnc	Simple aerosol	
Cloudscheme\microphysics	Wilson and Ballard	CASIM- 1M	CASIM-2M	CASIM- arcl/murk	
SMITH	RAL2-M				
PC2	RAL2-T				
BIMODAL	WB	*	RAL3	*	

CASIM 1M

CASIM 2M

WB

CASIM-arcl

casim-1M

casim 2M

casim-arcl

Precip rate distributions from 120 cases

Precip rate distributions normalised by radar obs from 120 cases

Cell precip threshold>32mm/h

CASIM exhibits smaller cell sizes compared to WB – less 'blobby'

2-M vs 1-M

Casim_2m

Casim_arcl

Casim_2m

Casim_arcl

Column integrated rain evap

South East Asia 4.4km realtime monitoring (S. Webster)

T+90 forecast accurately captures formation of 2 TCs for RA3 pack3 that are missing for pack2

Temperature 1.5m

Relative Humidity 1.5m

Cloud cover

Wind 10m

Comparison to synoptic obs at Darwin for 120 cases. 60 starting at 00Z, 60 starting at 12Z.

Model performance summary scorecards as a function of forecast lead time

 Δ ranked probability skill scores for near surface synoptic observations

 Δ fractional skill score for precipitation on the right.

Green triangles = improvement by the CASIM configuration relative to the operational model.

Blue triangle = degradation.

Bold outlines = difference is statistically significant. 10 OFEG tickets deemed as major or high deficiencies for the UKV. Tickets have been open for 3-8 years.

Examples from tickets:

Ticket	Summary	
#532	Minimum temperatures too high and maxima too low (UKV)	major
#525	Lack of Light Rain and Drizzle - RMED#72	high
#526	Unrealistic Fragmentation of Precipitation Bands - RMED#56	high
#529	Excessive development of showers in intensity and distribution - RMED#73	high

Unrealistic Fragmentation of Precipitation Bands #526 lack of light rain – too much heavy rain #525

Excessive development of showers in intensity and distribution #529

Unclear why HiRA precip is worse when FSS is improved and qualitative performance in terms of structure and rainrate histogram is also better. One potential reason is a +0.02mm/h precip bias that could be tuned out in future configurations

Unknowns

More degrees of freedom requires mor

Seifert and Beheng

Jouan and Milbrandt 2019

Sensitivity to changing graupel density (3A,B) or graupel-drop collision efficiency (2A,B)

Snow aggregation

Connolly et al. 2015 ACP

Southern Ocean, Outgoing SW, Ice Nucleating Particles dependence.

Vergara-Temprado et al. PNAS

2 to 3 moments?

• 2-mom gives clear improvement over 1-mom precip histogram – is it worth aging to 2 mam? N_r in kg⁻¹ q_r in g kg⁻¹ (b)(c)a 1.5 1.5 1.5 1 z in km 2m-C08-SBV 0.5 0.5 0.5 $(\mu_{init}=0)$ 3m-full $(\mu_{init} = 0)$ $(\mu_{init} = 5)$. •••••• SBM $\dots 3m$ -full ($\mu_{init} = 5$) 0 0 2 0.2 0.4 0.6 0.8 2000 4000 6000 8000 10000 0 6 8 0

Paukert et al. 2018 JAMES

Overlap of mixed-phase regions

Conclusions

- Relative to operational cloud microphysics (Single moment, Wilson and Ballard): CASIM has less intense precipitation and more lighter precipitation CASIM convective cell sizes are smaller
 CASIM improves deficiencies raised in longstanding Operational Forecaster tickets
- CASIM+bimodal cloud scheme unifies the configuration for midlatitude and tropics – no requirement for separate M/T configurations
- More degrees of freedom brings requirement to constrain more process rates/parameters
- CASIM is the new double moment microphysics accepted for use in the next operational regional configuration (RAL3).