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Clouds are a crucial component of Earth’s radiation budget
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Clouds are challenging to constrain due to their spatial variability
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In the horizontal…

…and vertical

Wood, 2012



Sub-grid assumptions in cloud parameterizations (and simulations of cloud 
observations) should be scale-dependent

Sub-grid condensate variability
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Ahlgrimm and Forbes, 2017
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Clouds are challenging to constrain due to the sensitivity of their microphysics 
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Small perturbations can have large impact in cloud propertiesCourtesy: Barbara Fielding

Courtesy: NASA MODIS



How can we improve representation of clouds in NWP models?

Improved analysis
• Via data assimilation 

– greatest impact on clouds/precipitation in first 24-hours

Improved forecast model
• Comparison studies between models and observations/retrievals

– Improved physical understanding

– Characterisation of model parameters

• Increased complexity of model and/or parameterizations

• Tuning of uncertain model parameters to improve forecast skill
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Data assimilation of clouds at ECMWF in a nutshell

• Adjust control vector, x, to minimize 4D-Var cost function, J(x):

• Clouds are inferred from temperature and humidity via diagnostic 
cloud scheme; currently no cloud variables in control vector.
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Cost function

Bias correction
Observations Model equivalent

Penalty for departure from background

Penalty for departure from observations
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Cloud and precipitation sensitive satellite observations: now and near future
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Cloud radars are the workhorses for cloud research
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Ground-based radars have provided unrivalled 
cloud measurements for past three decades

Kneifel and Moisseev, 2020

Courtesty: University of Köln



Space-borne cloud radars provide much greater spatial context
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CloudSat
2006 -

EarthCARE
c.2024 -

First space-borne cloud radar to provide NRT data
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A hierarchy of approaches for using data assimilation to 
improve NWP forecasts

• Improved initialization through assimilation of observations

• Model evaluation and improvement via first guess departures 

• Parameter estimation within observation operators

• Combined state and model parameter estimation
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 4D-Var experiments using CloudSat & CALIPSO show improvements to medium range forecast skill!
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…and also improves fit to microwave radiances!
• AMSU-A sensor aboard Aqua provides opportunity to 

assess impact of radar and lidar on co-located microwave 
radiances

• Microwave radiances simulated by RTTOV within IFS all-
sky framework

Duncan et al., 2022
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Inline observation operators provide direct comparison with observations
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• Radar reflectivity provides detailed 
information on cloud structure.

• Useful for evaluating model 
analysis/reanalysis or forecast skill 
when combined with other instruments.

CloudSat

1 km

4 km

9 km (conv. on)

9 km

DYAMOND ‘summer’ simulations

Courtesy: P. Lopez



Combining active and passive sensors for model evaluation
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 Modification of convective 
supercooled liquid water detrainment

Forbes et al., 2015
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Microphysical parameter estimation via radar/lidar/passive synergy
• Significant proportion of uncertainty in observation operator is due to microphysical uncertainties
• Radar and lidar are sensitive to different moments of cloud/ice particle size distributions
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CAPTIVATE retrievals and plotting courtesy of Shannon Mason

dBβ

For a given iwc: Lidar 
backscatter decreases 
with particle size

dBZ

For a given iwc: radar 
reflectivity increases 
with particle size

 Could synergy between observations be 
exploited during 4D-Var assimilation?
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• Minimize cost function, J, assuming model 
analysis ice water content, wa is truth:

where min minmax( ( 200) , )m kD D T D D= + −

Dm

( )2
min([ , ]) ( , )k a mJ D D y h w D= −

Proof of principle: off-line parameter estimation of observation operator 
microphysical assumptions

Geer 2021, AMT

Radar and lidar Microwave radiances

Can these be 
combined?

Dm

 Multi-parameter 
minimization



Constraining drizzle microphysics within the IFS Single Column Model

• Warm-rain processes are a key driver for the 
global distribution of clouds; stratocumulus to 
cumulus transition zones remain poorly 
represented in most global models.

• ARM observational field site in the Azores 
provides a unique set of measurements, ideally 
situated to capture a range of cloud regimes.

• Use radar simulator placed within IFS SCM for 
parameter estimation of uncertain 
autoconversion and accretion processes.
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Azores field site. Courtesy: ARM



Fitting SCM to observations by adjusting warm-rain microphysical parameters
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+ Critical threshold

Observations

Single-column Model

Khairoutdinov and Kogan (2000) 

 Minimize fit to observations via Nelder-Mead method



… and applying them to global NWP forecasts
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RMS at 1000 hPa, T+24

Verification of relative humidity against operational forecast normalised by control

RMS, T+24

0 30 %15 %-30 % -15 %

 Not advisable to tune global parameters on individual cases!

-10 % 10 %5 %0 %-5 %
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• Theoretically possible to simultaneously estimate large-scale 
atmospheric state and model parameters using data assimilation 
techniques (e.g., 4D-Var: Solar constant estimation at ECMWF, Lopez 
2013; LETKF: Autoconversion and shallow convection Kotsuki et al., 
2018; roughness-length, Ruckstuhl and Janjić, 2020).
• Similar approach to VarBC and weak-constraint 4D-Var. For example, 
satellite radiance and observation operator biases have been estimated 
operationally since 2006 via VarBC (Auligne et al., 2007).
• Practically, a huge challenge! (e.g., Schirber et al., 2013)

– Do we need to estimate all uncertain parameters at once? How to avoid 
unphysical parameters? Potential correlations between parameters, requires same 
model in DA as full non-linear model…

– Danger of attributing model biases or errors to microphysical parameters

Can we use data assimilation techniques for global parameter estimation?
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But… with increasingly diverse observing system, parameters are 
increasingly constrained
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Summary

• Data assimilation system can be viewed as a unified observational framework for 
evaluating and improving models.

• Advances in observational capability, such as the imminent launch of EarthCARE
satellite, opens new possibilities for cloud physics development.

• Combined state and parameter estimation could create a step-change in the 
representation of physical processes in NWP, but many hurdles to overcome!
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