Challenges and recent progress in representing radiative processes in NWP models

...especially radiatively interactive ozone, pathways to predictability & moving beyond two streams

Robin Hogan, Tim Stockdale, Ryan Williams, Marco Matricardi, Inna Polichtchouk, Johannes Flemming, Chris Roberts, Frederic Vitart et al.

r.j.hogan@ecmwf.int

ECMWF Annual Seminar 2022

Challenges for radiation in NWP: inputs and boundary conditions

Accuracy & efficiency

$F = \int \int \int \int \int I(\lambda, x, X, t, \theta) \, d\lambda \, dx \, dX \, dt \, d\theta$

- Scheme numerically integrates instantaneous monochromatic radiances *I* to get broadband fluxes *F*
- Accuracy and efficiency depend on number of quadrature points used in each dimension

Sub-grid horizontal distance x

- "Tripleclouds" solver uses <u>3</u> quadrature points (only in cloudy layers)
- "McICA" solver presents each spectral interval with a different stochastic cloud profile: no additional quadrature points, but some noise if too few spectral intervals
- Large uncertainty in sub-grid cloud structure, so more quadrature points probably not justified
 3

Accuracy & efficiency

$F = \int \int \int \int \int I(\lambda, x, X, t, \theta) \, d\lambda \, dx \, dX \, dt \, d\theta$

- Scheme numerically integrates instantaneous monochromatic radiances I to get broadband fluxes F
- Accuracy and efficiency depend on number of quadrature points used in each dimension

Sub-sampling model points in space X and time t

- Radiation called every hour (better than 3-hourly) with 10x fewer spatial gridpoints
- Little detectable improvement when more frequent in time or space!
- Partly due to "approximate updates" (Hogan & Bozzo 2015) every gridbox/timestep

Zenith angle θ

- Virtually all atmospheric models assume diffuse radiation propagates with <u>2</u> zenith angles: the two-stream approximation (Schuster 1905), although solar radiation adds the direct beam so effectively <u>3</u> zenith angles
- Cost of *N*-stream scheme: no scattering O(N), with scattering $O(N^3)$!
- What is the accuracy gain of more streams, and how can we do it cheaply?
- Bernhard will discuss how we can represent 3D effects of these horizontallypropagating light rays
 4

Prognostic ozone interactive with radiation (for 48r1, 2023)

- Tim Stockdale has developed a new Hybrid Linear Ozone (HLO) scheme, trained on the CAMS ozone reanalysis and an improvement in predictive mode over previous Cariolle and BMS linear ozone schemes
- Radiatively interactive HLO already operational in CAMS forecasts, planned for HRES in 48r1

Percentage change to 7-day forecast skill, Tco1279 (9-km), June-September 2019

- Scores insensitive to temperature bias are improved substantially in the mid stratosphere (5-70 hPa)
- Training on the latest CAMS ozone changes the mean slightly, leading to a mean cooling at 50 hPa by a fraction of a degree; this means that RMSE is not improved, but the temperature bias will be improved by other changes, e.g. better vertical filtering and new gas optics scheme (in 49r1)

CECMWF

5-day impact of prognostic ozone, 2 Feb 2018, southern hemisphere

- Ozone anomalies of up to 20% (1 ppmv) occur in a wave pattern around the polar vortex
- These are correlated with temperature anomalies of up to 1 K, but stronger away from pole with increased solar heating
- Winds impacted via thermal wind balance
- Infrared effect tends to oppose solar heating: higher ozone and warmer air (from solar heating) both lead to more infrared cooling

In what situations does ozone improve mid-latitude temperature and winds?

• Ryan Williams (visiting scientist Nov 2020 to May 2021) studied sub-seasonal forecast skill following six strong Jan/Feb Sudden Stratospheric Warmings (SSWs), when ozone is strongly perturbed (51-member ensembles)

- **Southern hemisphere:** modest measurable improvement (up to 0.05); note stronger shortwave heating in this season
 - **C**ECMWF

 Northern hemisphere: SSWs already lead to a massive increase in stratospheric forecast skill, so limited scope for prognostic ozone to improve forecasts further

Timescales of radiative heating impact

- Predictive timescale of mid-latitude stratospheric ozone and temperature is ~2 weeks to ~2 months
- Why is the impact timescale of prognostic ozone ~10 days in mid-latitudes (but > 1 month in tropics)?

- Temperature difference between interactive-ozone and control is correlated with difference in shortwave heating rate (primarily due to ozone heating)
- Longwave heating is (generally) anticorrelated with temperature difference: warm anomalies cool faster
- Net heating is shortwave-dominated until ~10 days when ozone forces temperature difference, then longwave-dominated as temperature differences are damped and nonlinear effects become important

ecCKD gas optics scheme (for 49r1, 2024)

- Can generate a gas-optics scheme trained against the latest spectroscopy from a userspecified error tolerance: lower error means more accuracy but more spectral intervals (Hogan & Matricardi, JAMES 2022)
- My "CKDMIP" intercomparison project is evaluating numerous gas optics scheme worldwide against "line-by-line" calculations, including operational 252-term RRTMG
- ecCKD models with total of 64 points (32 in each of shortwave and longwave) is good compromise between accuracy & speed
- Overall radiation cost is halved, while some middle-atmosphere temperature biases are reduced

Temperature biases in free-running IFS in recent and future cycles

 47r3 (current) has longstanding biases: middle atmosphere too warm and polar lower stratosphere too cold

(a) \triangle Temperature (°C): 47r3

30

Latitude (N)

60

90

-60

-30

Latitude (°N)

Pressure (hPa)

mesosphere

stratosphere

troposphere |

Pressure (hPa)

 10^{-1}

10⁰

10¹

10²

-90

-60

- **48r1** (2023): HLO trained on latest CAMS ozone improves mesosphere; other bias changes mitigated with SLVF vertical filtering scheme
 - (b) \triangle Temperature (°C): HLO+SLVF 10 10^{0} 10⁰ Pressure (hPa) 10 10 10^{2} 10^{2}

30

60

 49r1 (2024): ecCKD uses improved solar spectrum with less UV, removing middle-atmosphere warm bias; better spectroscopy reduces polar lower stratosphere cold bias

11

Other cause of the polar lower stratosphere cold bias: much too moist!

(a) T₋ 255 UC – ERA–Interim

- Up to 5 K too cold
- Problem in IFS for at least 25 years
- Common to most/all global models

- Water vapour bias compared to MLS (%)
- Erroneous transport of water vapour from troposphere, emits too strongly in longwave
- What if we artificially reduce humidity seen by radiation?
- Just for experimental purposes, not operations!

Cold bias removed!

Impact of removing polar cold bias Frederic Vitart

- Monthly forecast experiment artificially reducing humidity seen by radiation leads to *improvement in troposphere monthly forecast skill* (good example of radiation interacting with other processes)
- What's the dynamical mechanism? Does the cold bias act as a barrier impeding the influence of the stratosphere on the troposphere?
- Hope to gain some of this effect from ecCKD gas optics, while improved water vapour transport is tackled by others

Blue is an improvement!

Beyond two streams for the propagation of diffuse radiation

- Invented by Schuster (1905) surely we can afford to do better 116 years layer?
- How should the discrete zenith angles be chosen for most accuracy?
- Consider isotropic emission or scattering from a flat surface:

- If radiance field is isotropic, suggests radiation evenly distributed in $\mu = \cos\theta$ space
- Sykes (1951) therefore suggested we should discretize μ in each hemisphere using Gauss-Legendre quadrature
- One angle per hemisphere has μ_1 =1/2 so θ_1 =60°

CECMWF

Athur Schuster

- But Lambert's Cosine Law says that energy from an isotropically emitting horizontal surface is proportional to μ
- Therefore we expect the most representative angle to be skewed to larger μ , or smaller θ

What discrete angles best approximate the transmittance of a layer?

- Reference transmittance $T = 2 \int_0^1 \exp(-\tau/\mu) \mu \, d\mu$
- Two stream approximation: $T \approx \exp(-\tau/\mu_1)$
- "Hemispheric mean" value of 60° significantly underestimates transmittance
- Elsasser (1942) suggested 53° is a better fit to the curve, and this is used in most longwave schemes worldwide, but still overestimates transmittance of low optical depth layers, and underestimates transmittance for high optical depth
- 4 streams better but with what angles & weights?

What is the best Gaussian quadrature scheme for choosing angles?

- We want to approximate a weighted integral $\int_a^b W(x)f(x)dx$ by $\sum_{i=1}^N w_i f(x_i)$
- Gaussian quadrature provides the optimal nodes x_i & weights w_i , and is *exact* if f(x) is a polynomial of degree $\leq 2N 1$
- Sykes used **Gauss-Legendre** quadrature, but:
 - > This incorrectly assumes W = 1
 - > Transmittance function not well fitted by a polynomial near the horizon ($\mu = 0$)
- Alternative: change of variables to make transmittance function smoother (see also Li 2000), e.g.:
 - ➢ Use $s = \mu^{1/4}$ resulting in weight $W = s^7$: use **Gauss-Jacobi** quadrature
 - ➤ Use $t = -2 \log \mu$ resulting in $W = \exp(-t)$: use **Gauss-Laguerre** quadrature
- Both suggest $\theta_1 \sim 53^\circ$ for 2 streams (*N*=1)!

16

Longwave evaluation with realistic clear-sky profiles

- 50 CKDMIP "evaluation" profiles
- No clouds so no scattering: computationally straightforward
- **2-stream** θ_1 =60°: large errors in fluxes and heating rates
- 2-stream θ₁=53°: improved fluxes but heating rates still biased – CO₂ cooling in upper stratosphere and mesosphere is too weak
- For 4 streams: "optimized" Gauss-Laguerre much more accurate than Gauss-Legendre

What about more streams?

- Evaluate on same CKDMIP profiles
- Alternative quadrature schemes at least EIGHT times more accurate than Gauss-Legendre for same number of streams!
- Gauss-Jacobi slightly better than Gauss-Laguerre
- Fourth-order convergence, so no need for more than 4 streams in an NWP context
- LESSON: always re-examine very old assumptions!

Modelling multi-stream, multi-layer longwave radiative transfer

Surface reflection and emission

- Work down then up through atmosphere using transmission *T* and emission *E* in each layer (used for calculations on previous slide)
- Cost increases linearly with number of streams: O(N)

- Work up through layers computing albedo of entire atmosphere below, then down to compute fluxes
- ecRad uses this method and incorporates cloudy regions in some layers ("Tripeclouds" solver)
- With 2N streams, replace each scalar by an N×N matrix, but matrix multiplication goes as O(N³) so 4 streams is ~8x more expensive than 2 streams!

How can we make this more affordable?

 Perform a standard two-stream "Tripleclouds" solve, with scattering, to obtain a first estimate of the distribution of fluxes using the two-stream approximation

- Then use the 2+4 idea of Fu et al. (1997): cast four rays through the domain, including attenuation and emission along the way as in the no-scattering case, but use the Tripleclouds fluxes to add the contribution of scattering into the beam
- Sum the 2 upward and 2 downward beams to get a better estimate of the flux profiles

Impact on model climate (preliminary!)

- Ensemble of 4x 1-year free-running 60-km resolution simulations
- JJA average shown here, control is 2-stream with 53°

JJA 7-day forecast bias (±2K)

- Cooling of upper stratosphere and mesosphere by up to 2 K (consistent with offline results)
- Warming of upper tropical troposphere by around 0.5 K
- Cooling of the summer northern hemisphere troposphere, *countering a long-standing bias!*

Summary

- Much scope for improving radiation performance via improved inputs and boundary conditions
 - Prognostic ozone improves stratospheric predictive skill but what are the mechanisms and how can we extend the timescale of impact?
 - How can we improve stratosphere-troposphere coupling, e.g. by improving mean temperature structure?
 - Aerosols, clouds, land-surface albedo and urban areas are also being actively investigated at ECMWF
- Faster gas optics schemes (e.g. ecCKD and ACRANEB) offer the possibility to invest more computational resource into more accurate solvers, e.g. more than two streams
 - Sykes (1951) method still widely used to select discrete angles, but we can do much better!
 - Four-stream longwave solver (using Fu's 2+4 stream approach coupled to Tripleclouds) changes temperature bias structure in interesting ways, and also increases radiative coupling between nearby layers
 - Two-stream method potentially incurs larger errors in shortwave calculations of cloud reflectance when the sun is low in the sky – can we explicitly model the wide-angle forward scattering lobe in the scattering phase function of clouds, without the expense of a full four-stream solver?
 - Or consider representing 3D effects? Could also increase complexity further, then emulate the behaviour cheaply using a Neural Network (see Mat's talk)

