Single-band approach – a way to full cloud-radiation interaction

Ján Mašek (in memory of Jean-François Geleyn)

Introduction

- Contemporary numerical weather prediction (NWP) models predominantly use the radiation schemes based on the **correlated** *k*-distribution (CKD) method.
- Radiative fluxes and heating rates delivered by the CKD method have outstanding accuracy.
- However, the method is too expensive to be used in every model grid-point and time-step.
- A common way how to make the computational cost affordable for NWP is to perform radiation calculations with **reduced update frequency** and/or on **coarser grid**.
- Such approach **undersamples cloud-radiation interaction** for quickly evolving or highly variable model cloud field.
- Is there a feasible alternative that would capture the cloud-radiation interaction fully?

Central problem – spectral integration

Band transmission in the absence of scattering: $\tau(u, p, T) = \int_{\Delta u} w_{\nu} \exp[-k_{\nu}(p, T)u] d\nu$.

Log of absorption coefficient k as a function of (left) wavenumber ν , and (right) cumulative probability g for the ozone 9.6 μ m band, p = 25 hPa, and T = 220 K. Source: Fu and Liou (1992).

Czech

Institute

Two basic NWP approaches to spectral integration

- 1) Broadband approach (historically older):
 - band transmission obtained by **analytical integration** of k_{ν} , constructed as a superposition of spectral lines with **idealized distribution** of line positions and strengths, e.g.:

 $\tau_{\text{malkmus}}(u, p, T) = \exp\{-a(T)[\sqrt{1 + 4b(p, T)u} - 1]/[2b(p, T)]\};$

- parameters a(T), b(p,T) either related to the actual mean line parameters, or determined by fitting the band model transmission to a line-by-line reference.

2) *k*-distribution method (present mainstream):

- k_{ν} values reordered according to their cumulative probablity g;
- band transmission obtained by **numerical integration** of k(g), using a **small number** of quadrature points: $\tau(u, p, T) = \sum_{i} \exp[-k(g_i, p, T)u] \Delta g_i$.

Czech Hydrometeorological Institute

Optical saturation – the main troublemaker

- Band radiative transfer in **non-grey media** has to deal with **optical saturation.**
- For small absorber amounts, band optical depth δ grows linearly with absorber amount u.
- For bigger absorber amounts, radiation at strongly absorbing wavelengths is spent, and the band optical depth grows with slower than linear rate. δ
- The more distant is the layer from the source, the more transparent it appears: $\Delta \delta = \delta(u + \Delta u) \delta(u)$.
- Each emission source implies its own set of band optical thicknesses $\Delta \delta$.
- Optical saturation strongly penalizes the LW band approach, where an exact solution with L atmospheric 0 Δu layers would require L + 1 solvings of the radiative transfer equation.

Pros and cons of the CKD method

⊕ Optical saturation is escaped by performing a set of quasi-monochromatic calculations.

- ⊕ Even the small number of quadrature points guarantees outstanding accuracy.
 (~10 quadrature points per band)
- ⊕ Treatment of inhomogeneous optical paths by **correlated assumption is quite accurate.**
- ⊖ Width of bands is limited by the variation of spectral weights and of scattering coefficient.
 (~10 bands needed to cover SW or LW spectra \Rightarrow ~100 quadrature points in total)
- ⊖ Solving radiative transfer equation once for each quadrature point is **expensive.**
- ⊖ Radiative update due to clouds implies full or partial **recalculation of the gas optics**:
 - radiative update in every model time-step is too costly (redundant gaseous calculations);
 - intermittent radiative update compromises accuracy (undersampled cloud evolution).

Czech

Institute

Pros and cons of the single-band approach

- ⊖ Important spectrally unresolved phenomena have to be parameterized, including all kinds of optical saturation.
- ⊖ Treatment of inhomogeneous optical paths by the 2-parametric Curtis-Godson scaling approximation has a limited accuracy.
- ⊖ Another accuracy limitation comes from an assumption of **spectrally flat surface albedo**.
- \ominus With L atmospheric layers, computational cost of LW calculations is proportional to L^2 .
- \oplus Radiative update due to clouds can be done without recalculating the gas optics.
- ⊕ Selective intermittency is affordable thanks to a manageable memory size needed for the transfer of single-band gaseous optical thicknesses between the model time-steps.
- \oplus Computational cost of LW calculations essentially linear in L can be achieved by the **net** exchanged rate (NER) decomposition with bracketing.

Czech

Institute

Necessary improvements of the single-band scheme

- To extend the broadband approach to single SW and LW bands, several improvements were necessary to achieve accuracy sufficient for the short-range NWP:
 - broadband correction of the Malkmus band model & incorporation of Voigt line shape;
 - parameterized optical saturation of Rayleigh scattering;
 - dependence of LW gaseous transmissions on the temperature of emitting body;
 - parameterized non-random LW overlaps between gases;
 - parameterized SW cloud optical saturation;
 - parameterized non-random SW overlaps between gases and clouds.
- Increased computational cost of the improved scheme can be reduced by selective intermittency without significant accuracy loss.

Czech

Method of idealized optical paths – SW gaseous absorption

- How to evaluate **optical saturation** in the presence of **scattering?**
- For gases, **idealized optical paths** can be taken, giving exact saturation in the absence of Rayleigh scattering, aerosols and clouds:

path for direct transmission

path for diffuse transmission

Czech

- the source is direct solar radiation incoming at the top of the atmosphere;
- scattered radiation is generated only by reflection from Lambertian surface.
- Obtained saturated gaseous optical properties are combined with those of remaining radiatively active species, and they are used in a system with scattering.
- Idealized optical paths are applicable also to Rayleigh scattering, but not to clouds.

Beyond idealized optical paths – SW cloud optical saturation

- In the single SW band, clouds cannot be treated as grey bodies.
- SW cloud optical saturation must be evaluated with an inclusion of **multiple scattering**, accounting for the influence of the cloud layers above and below:

$$c^{\text{scat}}(\delta_0) = k^{\text{scat}}/k_0^{\text{scat}} \approx 1,$$

$$c^{\text{abs}}(\delta_0) = k^{\text{abs}}/k_0^{\text{abs}}$$

$$= 1/[1 + (\delta_0/\delta_0^{\text{crit}})^m]^n,$$

$$\Delta \delta_{0l}^{\text{eff}} = \sum_{\substack{k=1\\k=1}}^{l-1} B^{\text{above}} n_k \Delta \delta_{0k} + \Delta \delta_{0l} + \sum_{\substack{k=l+1\\k=l+1}}^{L} B^{\text{below}} n_k \Delta \delta_{0k}.$$

Czech

Institute

Hydrometeorological

Breaking the LW barrier – NER decomposition

- Net LW flux across any atmospheric level can be split into three components:
 - cooling to space (CTS);
 - exchange with surface (EWS);
 - exchange between atmospheric layers (EBL).
- By clever manipulation with the source term, CTS EWS flux can be obtained by single solving of the radiative transfer equation \Rightarrow cost linear in L.
- A set of **equivalent grey gaseous optical thicknesses** can be constructed, giving exact CTS flux in the absence of scattering.
- The same holds for EWS flux. A blocking point is EBL flux, where the exact calculation requires L solvings with L sets of gaseous transmissions ⇒ cost quadratic in L.
 www.chmi.cz
 11/19

Breaking the LW barrier – bracketing technique

- Optically thin layers exchange less than optically thick ones.
- The most costly EBL flux can be interpolated between its cheap min/max estimates.
- Interpolation weights α are obtained in a **clearsky case.**
- They are filtered and applied with offsets β in a **cloudy case.**

narrowband reference minimum estimate maximum estimate absorptivity-emissivity calculation

narrowband reference minimum estimate maximum estimate interpolated flux / no filtering

 $\beta = \mathsf{EBL}^{\mathsf{clear}} - (1 - \alpha) \mathsf{EBL}_{\min}^{\mathsf{clear}} - \alpha \mathsf{EBL}_{\max}^{\mathsf{clear}}$

$$\mathsf{BL} = (1 - \alpha)\mathsf{EBL}_{\mathsf{min}} + \alpha\mathsf{EBL}_{\mathsf{max}} + \beta$$

$$\alpha = \left\langle \frac{\mathsf{EBL}^{\mathsf{clear}} - \mathsf{EBL}^{\mathsf{clear}}_{\min}}{\mathsf{EBL}^{\mathsf{clear}}_{\max} - \mathsf{EBL}^{\mathsf{clear}}_{\min}} \right\rangle_{\mathsf{filter}}$$

Ε

Breaking the LW barrier – final assembling

• NER decomposition with bracketing obtains the net LW flux by 8 solvings of the radiative transfer equation:

$$F^{net} = CTS + EWS \underbrace{EBL_{min}}_{EBL_{max}} \underbrace{EBL_{max}}_{H(1-\alpha)} \underbrace{(F^{net}_{min} - CTS_{min} - EWS_{min})}_{(F^{net}_{max} - CTS_{max} - EWS_{max})} + \beta.$$

- Computation employs 4 sets of equivalent grey gaseous optical thicknesses: $\Delta \delta_{CTS}, \Delta \delta_{EWS}, \Delta \delta_{EBL_{min}}$ and $\Delta \delta_{EBL_{max}}$.
- Expensive calculation of clearsky bracketing weights α and offsets β can be done intermittently \Rightarrow cost of the scheme remains essentially linear in *L*.
- Scattering by **aerosols and clouds** is accounted for, situation is simplified by the fact that in the LW spectrum, they **can be treated as grey bodies.**

Czec

Stand-alone accuracy – LW heating rates

narrowband reference (432 LW bands) ACRANEB2 scheme (1 LW band)

Czech

Institute

Hydrometeorological

LW heating rate comparison with (left) no LW scattering, and (right) LW scattering included.

Full versus selective intermittency

- Full intermittency does not solve the radiative transfer equation in every model time-step (typically every 1h).
- Selective intermittency solves the radiative transfer equation in every model time-step:
 - actual cloud optical properties are used;
 - gaseous transmissions / bracketing weights are updated less frequently (typically every 1h/3h).

Demo case for comparing the two intermittent strategies: Passage of the waving cold front in Prague on 1st/2nd July 2012. Evolutions of layer cloud fractions and total cloud cover are shown, $\Delta t = 3$ min. Source: Mašek (2017).

Czec

Institute

Full versus selective intermittency – LW net flux error

1h full intermittency

Intermittently updated LW net flux versus actual LW net flux. Offline mode.

www.chmi.cz

Czech

Institute

Full versus selective intermittency – LW error balance

- In a cloudy case, error coming from full intermittency becomes dominant.
- Error of selective intermittency remains comparable to error of single-band approach.
- Error balance is important for optimal use of computational resources.

RMSE of (left) LW net flux, and (right) LW heating rate due to

Czech

Institute

Hydrometeorologica

single-band approach, 1h full intermittency, and 1h/3h selective intermittency. Offline mode.

Conclusions

- In the context of **short-range NWP**, the single-band approach is no longer a poor relative of the noble CKD method.
- After substantial improvements, the radiation scheme using single SW and LW spectral bands became **competitive to the mainstream approach.**

CKD mothod	comparable accuracy	single-band approach,
CKD method,		selective intermittency
full intermittency	comparable cost	Sciective intermittency,
i an internitionery	comparable coor	NER decomposition with bracketing

- Selective intermittency brings an advantage of the **full cloud-radiation interaction**, compensating for a lower stand-alone accuracy of the gaseous transmissions.
- Some accuracy limitations of the single band-approach are difficult to break. Could they be overcome by a **hybrid solution?**

Czech

Institute

References – ACRANEB2 scheme

- J. Mašek, J.-F. Geleyn, R. Brožková, O. Giot, H. O. Achom, and P. Kuma, 2016: Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps. *Q. J. R. Meteorol. Soc.*, 142, 304–326.
- J.-F. Geleyn, J. Mašek, R. Brožková, P. Kuma, D. Degrauwe, G. Hello, and N. Pristov, 2017: Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing. *Q. J. R. Meteorol. Soc.*, **143**, 1313–1335.
- J. Mašek, 2017: Broadband radiation scheme fully interacting with clouds. *Doctoral Thesis, Charles University in Prague, Faculty of Mathematics and Physics,* 102 pp.

Czech

Institute

Thank you for your attention

Ján Mašek jan.masek@chmi.cz

Acknowledgment

R

Author thanks the Technology Agency of the Czech Republic (TAČR) for its financial support under Grant SS02030040: Prediction, Evaluation and Research for Understanding National Sensitivity and Impacts of Drought and Climate Change for Czechia (PERUN).

A Tento projekt je spolufinancován se státní podporou Technologické agentury ČR a Ministerstva životního prostředí v rámci **Programu Prostředí pro život.**

www.tacr.cz www.mzp.cz

Czech Hydrometeorological Institute