Snow modelling and cryosphere-atmosphere interactions

Gabriele Arduini ECMWF, Earth System Modelling Section

With contributions from many people in Research and Forecast departments

CECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

© ECMWF September 15, 2022

Snow characteristics and properties

Snow is a stratified porous medium

- Complex microstructure (grain size/shape)
- Thermal conductivity is usually related to density
 - Snow is an effective thermal insulator
- Density greatly varies with depth

Snow thermal insulation – atmosphere

The low thermal conductivity may lead to a thermal decoupling between the atmosphere and soil underneath in clear-skies Implications for near-surface temperature forecasts in snow-covered regions

Important to get clouds right!

Bias of T2m in ECMWF operational model at day 3 for DJF 2017/2018

Day et al. 2020

CECMWF

A more holistic view on coupled BL processes

Arctic boundary Layer:

- Predominantly in a cloudy and clear-sky states
- Mixed phase clouds are key radiative drivers for transition between states
 - Challenging to represent!

SHEBA observations

Pithan et al. (2018, 2016, 2014)

Snow thermal insulation – soil

Snow cover and depth are key drivers of soil temperature in high-latitude

- Impact on permafrost (e.g. Koven et al. 2013)
- Impact on water cycle (e.g. Ploum et al. 2019)
- Important for longer time-scales and reanalyses

Mean annual cycle of **soil temperature** at **1.60m** depth compared

Developing a multi-layer snow scheme for the IFS

Snow processes at ESM-SnowMIP – site (point-scale) simulations

Observational sites measuring forcing variables to run land-surface models

> reducing compensating errors due to uncertainties in atmospheric fields

Arduini et al., JAMES 2019; Boussetta et al., Atmosphere, 2021

Impact on snow depth at the global scale (land-surface only)

- Offline: land-surface model driven by ERA5 meteorological forcing
- Evaluation using global synop network of snow depth observations, 2014 to 2018

Time-series from avg of synop stations

General improvement of snow depth with the multi-layer snow scheme over the NH in offline simulations

Snow data assimilation and observations

Data Assimilation: de Rosnay et al SG 2014

- **Optimal Interpolation** (OI) is used to optimally combine the model first guess, in situ snow depth and IMS snow cover
- **Multi-layer snow**: No variations in the algorithm, analysis performed using the total snow depth

GTS Snow depth (e.g., availability for 15 January 2020)

NOAA/NESDIS IMS Snow extent data

http://nsidc.org/data/g02156.html

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Multi-layer snow impact in the snow data assimilation system

Winter 2019/2020, 3 months analysis, compared to analysis using the single-layer snow scheme

RMSE diff in AN increments of snow depth for Jan 2020, 06UTC/18UTC

General reduction of analysis increments

Snow temperature and density diagnostics – Sodankyla, Findland

Variability of snow temperature is qualitatively well captured Realistic snow density in the top layers Overestimation of snow density in bottom layers

– missing upward water vapor fluxes?

ECECMWE

Process-based snow-atmosphere coupling – Sodankyla, Findland

Improving relationship between surface energy fluxes and atmospheric radiative forcing

Improved simulation of cold surface temperatures

Reduced coupling strength between heat flux into the snowpack and radiative forcing

Impact of multi-layer snow modelling in coupled land-atmosphere forecasts

Coupled forecasts for winter 2016/2017 (December to February), t+24 hours,

- Forecasts with current single-layer snow scheme show widespread positive (warm) bias in minimum T2m
- Improved simulation of daily minimum temperature with multi-layer snow

Arduini et al. 2019

ML snow reduces bias

What do we gain in a probabilistic sense? – Fraction of CRPS err > 5K

Winter, DJF 2019/2020 Forecasts initialized from analysis using consistent snow scheme (multi-layer or single-layer)

Thanks to Thomas Haiden for the maps and statistics

Evaluating the impact of multi-layer snow on hydrology – River discharge

Daily mean annual cycle of river discharge for Kolyma river, lat=68.72; lon=158.71

- More catchments show improvements, in particular over Rockies and mid-latitude Eurasia
- Many catchments in cold climates show lower skills (permafrost regions)
- In permafrost areas, excess of water infiltrating into the soil amplifies river discharge biases. Main causes:
 - warmer soil temperature in snowML
 - Frozen soil thawing for sub-zero temperatures

CECMWF

Optimising land-surface model developments with hydrology

Optimising parameters related to the frozen soil – snowpack interaction for better runoff

Sensitivity to **frozen soil, snow density** and **vertical discretization** indicate an improvement in river discharge in permafrost catchments

Also improvements in snow depth and soil temperature (see *Cao et al 2022*)

Some of these under testing for future IFS cycles – CY49R1

Zsoter et al. 2022

0.05

0.10

-0.05

0.00

Bias error

Modelling of snow over ice surfaces

Substantial temperature biases over sea-ice surfaces

• Implications for ice growth

Biases of different reanalysis surface temperature against in-situ observations

Warm biases of several K in reanalyses and operational IFS Biases focussed on high snow cover over the Arctic No thermodynamic effect due to snow (insulation)

Bias in wintertime clear-sky surface temperature between ERA5 and satellite product

ARTICLE

ttps://doi.org/10.1038/s41467-019-11975-3 OPEN

On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice

Yurii Batrak 💿 ¹ & Malte Müller 💿 ¹

Testing the impact of snow over sea-ice in the ECMWF IFS

Accounting for the thermal effect of snow on top of sea-ice in the IFS Coupling of ice fraction **and snow depth** from sea-ice model

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Evaluating the impact of snow over sea-ice in the ECMWF IFS – in situ

Evaluation using *in situ* observations from **N-ICE2015** campaigns and co-located CMEMS satellite observations, Jan/Feb 2015

- Accounting for snow over sea-ice improves the match of the short-range FC to in-situ observations
- Variability of surface temperature more consistent with observations

ECMWF

Impact on Arctic winter states – NICE2015 case

Arduini et al. 2022

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

- Arctic boundary layer is preferentially in two states –
- No-snow experiment shows little sensitivity in temperature inversion to net longwave variations
- Accounting for snow over sea-ice enables a better description of the clear-sky state and atmospheric inversions

Evaluating the impact of snow over sea-ice in the ECMWF IFS – Arctic

Skin temperature of analysis against CMEMS satellite surface temperature observations, DJF 2020/2021

RMSE diff against satellite Surface temperature

Conclusions and additional thoughts

- Multi-layer snow model **targeted for operational** implementation in **IFS cycle 48r1** improves the the simulation of snow and of near-surface temperature biases over cold surfaces. Still,
 - Challenges associated with upward water vapor fluxes in Arctic snowpack
 - Challenges associated with development of more physically-based albedo
- Hydrological evaluation of land-surface model developments can highlight parametrization issues
- Accounting for snow over sea-ice can largely reduce biases in surface temperature over ice
 - How do we initialize snow depth in a coupled NWP system over sea-ice?
- Challenges related to compensating errors between cloud and surface processes in the Arctic

CECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

CECMWF

Impact on snow depth in forecasts initialized from analysis using the multi-layer snow

Winter, 3 months (DJF 2019/2020), verification with synop observations.

FC at DAY 5, 00UTC

Positive impact on snow depth in medium-range FC in North Hemisphere

Snow depth bias reduced at day 5 and day 10

Optimising land-surface model developments with hydrology - feedback

Optimised processes also improves land-surface components

Snow depth biases reduced

Improved soil temperature and permafrost extent

Testing now in coupled forecasts for future cycles – initial results positive

Permafrost extent from obs (cyan) and model (green) for 2002

Assessing the impact of multi-layer snow modelling on the hydrological cycle

River discharge informing land-surface model developments on the integrated hydrological cycle, highlighting compensating errors between components

Impact on Arctic winter states – SHEBA case

Evaluating the impact of snow over sea-ice in the ECMWF IFS – Arctic

Coupled ocean-atmosphere forecasts at day 2 and 5 for Winter 2015

- General reduction of the bias in snow on ice experiment compared to satellite product
- Errors are most reduced where snow depth is largest
- What is the uncertainty of the satellite?

ECMWF

Observation usage challenges

Errors in the surface (skin) temperature, may affect the uptake of satellite observations (together with other sources of errors, e.g. observation operator)

Number of satellite observations

NOAA-15 AMSU-A channel 5 (peaks 500-700hPa)

> First guess departure (Obs – FC)

APPLICATE.eu

Advanced prediction in polar regions and beyond

- better coverage from polar orbiting satellites than anywhere else
- more challenges with their use
 - model errors
 - radiative transfer modelling
- more data rejected for tropospheric channels in winter, in particular over snow and sea-ice

Lawrence et al, ECMWF, TM845, 2019

