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What are orographic gravity 
waves and what impact do 

they have?



What impact do they have?

2.5 km model simulation over the Antarctic Peninsula with 
Met Office Unified Model

~100 kmWind speed Vertical Velocity



Why do we care about them?



Figure created using https://datapub.fz-juelich.de/slcs/airs/gravity_waves/

AIRS Satellite Brightness Temperature Perturbations at ~ 40 km

They propagate into the stratosphere



Why do we care about them?
During Vortex breakdown

They affect Polar Vortex Variability



Why do we care about them?Stratosphere is important for predictability



How are they represented in 
models?



How are they represented in models?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Mass Continuity

They can be explicitly resolved by model dynamics



How are they represented in models?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Inferred temperature variances at 30-40 km altitude 

2.5 km UM 

Kruse et al (2021), JAS

Mass Continuity

They can be explicitly resolved by model dynamics



How are they represented in models?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Inferred temperature variances at 30-40 km altitude 

AIRS satellite 2.5 km UM 

Kruse et al (2021), JAS

Mass Continuity

They can be explicitly resolved by model dynamics



How are they represented in models?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Mass Continuity

Kruse et al (2021), JAS

Inferred temperature variances at 30-40 km altitude 

AIRS satellite 2.5 km UM 9 km ECMWF IFS

Kruse et al (2021), JAS

They can be explicitly resolved by model dynamics



How are they represented in models?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Mass Continuity

They can be explicitly resolved by model dynamics



How are they represented in models?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

+ 𝐹𝐹𝑢𝑢

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

+ 𝐹𝐹𝑣𝑣

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Mass Continuity
𝐹𝐹𝑢𝑢,𝐹𝐹𝑣𝑣= parametrized zonal 

and meridional wind 
forcing from gravity waves 

They must also be parametrized



How are they represented in 
theory?



How are they represented in theory?
Momentum
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝐷𝐷𝑢𝑢
𝑟𝑟
− 2Ω𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +

𝐷𝐷𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤
𝑟𝑟

+ 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝑢𝑢 −
1

𝜌𝜌𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

= −
𝑢𝑢𝑢𝑢
𝑟𝑟
−
𝐷𝐷2𝐷𝐷𝑢𝑢𝑢𝑢𝑤𝑤

𝑟𝑟
− 2Ω𝑤𝑤𝑠𝑠𝑢𝑢𝑤𝑤𝐷𝐷 −

1
𝜌𝜌𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

𝐷𝐷𝑢𝑢
𝐷𝐷𝐷𝐷

=
(𝐷𝐷2+𝑢𝑢2)

𝑟𝑟
+ 2Ω𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐷𝐷 − 𝑔𝑔 −

1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕𝜌𝜌
𝜕𝜕𝐷𝐷

+ 𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝐷𝐷𝜃𝜃
𝐷𝐷𝐷𝐷

=
𝜃𝜃
𝑇𝑇
�̇�𝑄
𝑤𝑤𝑝𝑝

Thermodynamics

Mass Continuity

Their impacts are approximated through simplification



Momentum

𝒖𝒖 ⋅ ∇𝐷𝐷 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝒖𝒖 ⋅ ∇𝑢𝑢 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= −𝜌𝜌𝑔𝑔

𝛻𝛻 · 𝜌𝜌𝒖𝒖 = 0

𝒖𝒖 ⋅ ∇𝜃𝜃 = 0

Thermodynamics

Mass Continuity

Following assumptions are made:

Cartesian coordinates
No rotation
Adiabatic

Steady state
Hydrostatic equilibrium

Their impacts are approximated through simplification



How are they represented in theory?
Momentum

𝑈𝑈
𝜕𝜕𝐷𝐷′

𝜕𝜕𝑥𝑥
+ 𝑉𝑉

𝜕𝜕𝐷𝐷′

𝜕𝜕𝑦𝑦
+ 𝑢𝑢𝑤

𝜕𝜕𝑈𝑈
𝜕𝜕𝑧𝑧

= −
1
𝜌𝜌
𝜕𝜕𝜕𝜕𝑤
𝜕𝜕𝑥𝑥

𝑈𝑈
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑥𝑥
+ 𝑉𝑉

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑦𝑦
+ 𝑢𝑢′ 𝜕𝜕𝑉𝑉

𝜕𝜕𝑧𝑧
= −

1
𝜌𝜌
𝜕𝜕𝜕𝜕′

𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕𝑤
𝜕𝜕𝑧𝑧

= −𝜌𝜌𝑔𝑔

𝜕𝜕𝐷𝐷′

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑢𝑢𝑤
𝜕𝜕𝑧𝑧

= 0

𝑈𝑈
𝜕𝜕𝜃𝜃′

𝜕𝜕𝑥𝑥
+ 𝑉𝑉

𝜕𝜕𝜃𝜃𝑤
𝜕𝜕𝑦𝑦

+ 𝑢𝑢′ 𝜕𝜕Θ
𝜕𝜕𝑧𝑧

= 0

Thermodynamics

Mass Continuity

Following assumptions are made:

Cartesian coordinates
No rotation
Adiabatic

Steady state
Hydrostatic equilibrium

Linearised : 𝐷𝐷 = 𝑈𝑈(𝑧𝑧) + 𝐷𝐷′ 𝑥𝑥,𝑦𝑦, 𝑧𝑧 , 𝐷𝐷′𝐷𝐷𝑤 ∼ 0

Their impacts are approximated through simplification



How are they represented in theory?

At the surface the vertical velocity is: 𝑢𝑢′ 𝑥𝑥,𝑦𝑦, 0 = 𝑼𝑼 ⋅ ∇ℎ
ℎ = height at the surface

Following assumptions are made:

Cartesian coordinates
No rotation
Adiabatic

Steady state
Hydrostatic equilibrium 

Linearised : 𝐷𝐷 = 𝑈𝑈(𝑧𝑧) + 𝐷𝐷′ 𝑥𝑥,𝑦𝑦, 𝑧𝑧 , 𝐷𝐷′𝐷𝐷𝑤 ∼ 0

Momentum

𝑈𝑈
𝜕𝜕𝐷𝐷′

𝜕𝜕𝑥𝑥
+ 𝑉𝑉

𝜕𝜕𝐷𝐷′

𝜕𝜕𝑦𝑦
+ 𝑢𝑢𝑤

𝜕𝜕𝑈𝑈
𝜕𝜕𝑧𝑧

= −
1
𝜌𝜌
𝜕𝜕𝜕𝜕𝑤
𝜕𝜕𝑥𝑥

𝑈𝑈
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑥𝑥
+ 𝑉𝑉

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑦𝑦
+ 𝑢𝑢′ 𝜕𝜕𝑉𝑉

𝜕𝜕𝑧𝑧
= −

1
𝜌𝜌
𝜕𝜕𝜕𝜕′

𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕𝑤
𝜕𝜕𝑧𝑧

= −𝜌𝜌𝑔𝑔

𝜕𝜕𝐷𝐷′

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝑢𝑢𝑤
𝜕𝜕𝑧𝑧

= 0

𝑈𝑈
𝜕𝜕𝜃𝜃′

𝜕𝜕𝑥𝑥
+ 𝑉𝑉

𝜕𝜕𝜃𝜃𝑤
𝜕𝜕𝑦𝑦

+ 𝑢𝑢′ 𝜕𝜕Θ
𝜕𝜕𝑧𝑧

= 0

Thermodynamics

Mass Continuity

Their impacts are approximated through simplification



How are they represented in theory?
Momentum

𝑈𝑈 �𝐷𝐷𝑠𝑠𝑖𝑖 + 𝑉𝑉 �𝐷𝐷𝑠𝑠𝑖𝑖 + �𝑢𝑢
𝜕𝜕𝑈𝑈
𝜕𝜕𝑧𝑧

= −
1
𝜌𝜌
�̂�𝜕𝑠𝑠𝑖𝑖

𝑈𝑈 �𝑢𝑢𝑠𝑠𝑖𝑖 + 𝑉𝑉 �𝑢𝑢𝑠𝑠𝑖𝑖 + �𝑢𝑢
𝜕𝜕𝑉𝑉
𝜕𝜕𝑧𝑧

= −
1
𝜌𝜌
�̂�𝜕𝑠𝑠𝑖𝑖

𝜕𝜕 �̂�𝜕
𝜕𝜕𝑧𝑧

= −𝜌𝜌𝑔𝑔

�𝐷𝐷𝑠𝑠𝑖𝑖 + �𝑢𝑢𝑠𝑠𝑖𝑖 +
𝜕𝜕�𝑢𝑢
𝜕𝜕𝑧𝑧

= 0

𝑈𝑈 �𝜃𝜃𝑠𝑠𝑖𝑖 + 𝑉𝑉 �𝜃𝜃𝑠𝑠𝑖𝑖 + �𝑢𝑢
𝜕𝜕Θ
𝜕𝜕𝑧𝑧

= 0

Thermodynamics

Mass Continuity

Their impacts are approximated through simplification

𝑖𝑖, 𝑖𝑖 = zonal and 
meridional 

wavenumber

� =

ℎ𝑤 ∼ �
−∞

∞

�
−∞

∞

�ℎ (cos 𝑖𝑖𝑥𝑥 + 𝑖𝑖𝑦𝑦 + 𝑠𝑠𝑤𝑤𝑠𝑠𝑢𝑢 𝑖𝑖𝑥𝑥 + 𝑖𝑖𝑦𝑦 )𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

…

𝑢𝑢𝑤 ∼ �
−∞

∞

�
−∞

∞

�𝑢𝑢 (cos 𝑖𝑖𝑥𝑥 + 𝑖𝑖𝑦𝑦 + 𝑠𝑠𝑤𝑤𝑠𝑠𝑢𝑢 𝑖𝑖𝑥𝑥 + 𝑖𝑖𝑦𝑦 )𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

…



How are they represented in theory?

𝑑𝑑 (𝑈𝑈,𝑉𝑉)
𝑑𝑑𝐷𝐷

= −
1
𝜌𝜌
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜌𝜌𝐷𝐷′𝑢𝑢′,𝜌𝜌𝑢𝑢′𝑢𝑢′

Momentum

𝑈𝑈 �𝐷𝐷𝑠𝑠𝑖𝑖 + 𝑉𝑉 �𝐷𝐷𝑠𝑠𝑖𝑖 + �𝑢𝑢
𝜕𝜕𝑈𝑈
𝜕𝜕𝑧𝑧

= −
1
𝜌𝜌
�̂�𝜕𝑠𝑠𝑖𝑖

𝑈𝑈 �𝑢𝑢𝑠𝑠𝑖𝑖 + 𝑉𝑉 �𝑢𝑢𝑠𝑠𝑖𝑖 + �𝑢𝑢
𝜕𝜕𝑉𝑉
𝜕𝜕𝑧𝑧

= −
1
𝜌𝜌
�̂�𝜕𝑠𝑠𝑖𝑖

𝜕𝜕 �̂�𝜕
𝜕𝜕𝑧𝑧

= −𝜌𝜌𝑔𝑔

�𝐷𝐷𝑠𝑠𝑖𝑖 + �𝑢𝑢𝑠𝑠𝑖𝑖 +
𝜕𝜕�𝑢𝑢
𝜕𝜕𝑧𝑧

= 0

𝑈𝑈 �𝜃𝜃𝑠𝑠𝑖𝑖 + 𝑉𝑉 �𝜃𝜃𝑠𝑠𝑖𝑖 + �𝑢𝑢
𝜕𝜕Θ
𝜕𝜕𝑧𝑧

= 0

Thermodynamics

Mass Continuity
Assume that vertical momentum 

flux dominates

Their impacts are approximated through simplification



Linear hydrostatic gravity wave surface stress in spectral space:

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝜌𝜌𝐷𝐷′𝑢𝑢′,𝜌𝜌𝑢𝑢′𝑢𝑢′

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ (𝑘𝑘,𝑙𝑙)
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

𝜌𝜌0 = Density
𝑁𝑁0 = Stability
𝑖𝑖, 𝑖𝑖 = zonal and meridional wavenumber

𝐾𝐾 = (𝑖𝑖 + 𝑖𝑖)
1
2

𝐴𝐴 = Area
𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 = Surface wind

�ℎ = Fourier transform of mountain height

Expression for the momentum flux can be derived

� =



How are they parametrized in 
models?



How do we parametrize them?

Grid-box
𝑢𝑢 𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝐴𝐴−1𝜌𝜌0 �

−∞

∞

�
−∞

∞

𝐷𝐷′,𝑢𝑢′ 𝑢𝑢′𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ 𝑘𝑘,𝑙𝑙
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

�ℎ = Fourier transform of surface height

Linear hydrostatic gravity wave surface stress:

Mountains are assumed to be ellipses



How do we parametrize them?

𝜏𝜏𝑥𝑥 , 𝜏𝜏𝑦𝑦 = 𝐺𝐺𝜌𝜌𝑁𝑁
1

4𝑢𝑢
ℎ𝑒𝑒𝑒𝑒𝑒𝑒2 (𝑈𝑈𝐷𝐷)

Grid-box
𝑢𝑢

Assume elliptical mountains (Lott and Miller 1997, Phillips 1984):

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝐴𝐴−1𝜌𝜌0 �
−∞

∞

�
−∞

∞

𝐷𝐷′,𝑢𝑢′ 𝑢𝑢′𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ 𝑘𝑘,𝑙𝑙
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

�ℎ = Fourier transform of surface height

Linear hydrostatic gravity wave surface stress:

Mountains are assumed to be ellipses



How do we parametrize them?

𝜏𝜏𝑥𝑥 , 𝜏𝜏𝑦𝑦 = 𝐺𝐺𝜌𝜌𝑁𝑁
1

4𝑢𝑢
ℎ𝑒𝑒𝑒𝑒𝑒𝑒2 (𝑈𝑈𝐷𝐷)

Grid-box
𝑢𝑢

Assume elliptical mountains (Lott and Miller 1997, Phillips 1984):

Mountain half-width
Effective mountain height
Mountain anisotropy

h𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑠𝑠𝑢𝑢 ℎ,
𝑈𝑈
𝑁𝑁𝐹𝐹𝑐𝑐

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝐴𝐴−1𝜌𝜌0 �
−∞

∞

�
−∞

∞

𝐷𝐷′,𝑢𝑢′ 𝑢𝑢′𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ 𝑘𝑘,𝑙𝑙
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

�ℎ = Fourier transform of surface height

Linear hydrostatic gravity wave surface stress:

Mountains are assumed to be ellipses



How do we parametrize them?

𝜏𝜏𝑥𝑥 , 𝜏𝜏𝑦𝑦 = 𝐺𝐺𝜌𝜌𝑁𝑁
1

4𝑢𝑢
ℎ𝑒𝑒𝑒𝑒𝑒𝑒2 (𝑈𝑈𝐷𝐷)

Mountain half-width
Effective mountain height
Mountain anisotropy

ℎ

h𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑠𝑠𝑢𝑢 ℎ,
𝑈𝑈
𝑁𝑁𝐹𝐹𝑐𝑐

Accounting for weak winds or high stability



How do we parametrize them?

𝜏𝜏𝑥𝑥 , 𝜏𝜏𝑦𝑦 = 𝐺𝐺𝜌𝜌𝑁𝑁
1

4𝑢𝑢
ℎ𝑒𝑒𝑒𝑒𝑒𝑒2 (𝑈𝑈𝐷𝐷)

Mountain half-width
Effective mountain height
Mountain anisotropy

ℎ𝑒𝑒𝑒𝑒𝑒𝑒

h𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑠𝑠𝑢𝑢 ℎ,
𝑈𝑈
𝑁𝑁𝐹𝐹𝑐𝑐

Accounting for weak winds or high stability



How scale-aware is the 
current parametrization?



Run global UM model initialised from 
ECMWF analysis at grid-spacings of:

N96 (~130 km)  Climate

𝜏𝜏𝑇𝑇𝑜𝑜𝑇𝑇 = 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺
Resolved 

momentum flux:
𝜌𝜌𝐷𝐷′𝑢𝑢𝑤

Parametrized 
momentum flux

Total momentum flux

Total momentum flux should be constant across resolutions



How scale-aware is the current parametrization?

Run global UM model initialised from 
ECMWF analysis at grid-spacings of:

N96 (~130 km)  Climate
N320 (~40 km)  Seasonal

𝜏𝜏𝑇𝑇𝑜𝑜𝑇𝑇 = 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺
Resolved 

momentum flux:
𝜌𝜌𝐷𝐷′𝑢𝑢𝑤

Parametrized 
momentum flux

Total momentum flux

Total momentum flux should be constant across resolutions



How scale-aware is the current parametrization?

Run global UM model initialised from 
ECMWF analysis at grid-spacings of:

N96 (~130 km)  Climate
N320 (~40 km)  Seasonal
N1280 (~9 km)  Global NWP

𝜏𝜏𝑇𝑇𝑜𝑜𝑇𝑇 = 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺
Resolved 

momentum flux:
𝜌𝜌𝐷𝐷′𝑢𝑢𝑤

Parametrized 
momentum flux

Total momentum flux

Total momentum flux should be constant across resolutions



How scale-aware is the current parametrization?

Resolved GW momentum flux Parametrized GW momentum flux Total GW momentum flux

Parametrized GW momentum flux is 
almost insensitive to grid-length

Total GW momentum flux is 
significantly underestimated at 

large grid-lengths

Resolved GW momentum flux 
decreases at larger grid-lengths

Plots show: zonal mean zonal gravity wave 
momentum fluxes at 7 km above sea level

Increasing 
grid-length

Total momentum flux is smaller at lower resolutions



How scale-aware is the current parametrization?

Plots show: zonal mean zonal wind error relative 
to analysis at lead time of 5 days

Stratospheric winds are stronger at lower resolutions
130 km 40 km 9 km



How scale-aware is the current parametrization?

Resolved GW momentum flux Parametrized GW momentum flux Total GW momentum flux

Parametrized GW momentum flux is 
almost insensitive to grid-length

Total GW momentum flux is 
significantly underestimated at 

large grid-lengths

Resolved GW momentum flux 
decreases at larger grid-lengths

Plots show: zonal mean zonal gravity wave 
momentum fluxes at 7 km above sea level

Increasing 
grid-length

Total momentum flux is smaller at lower resolutions



How scale-aware is the current parametrization?

RealityParametrization

𝑢𝑢

Single length-scale approximation is 
not entirely realistic 



A more ‘scale-aware’ solution



A more scale-aware solution
Hydrostatic linearised expression for orographic momentum flux at 
surface:

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝐴𝐴−1𝜌𝜌0 �
−∞

∞

�
−∞

∞

𝐷𝐷′,𝑢𝑢′ 𝑢𝑢′𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ 𝑘𝑘,𝑙𝑙
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

�ℎ = Fourier transform of surface height

See van Niekerk and Vosper (2021)

Integrate over all subgrid scales



A more scale-aware solution
Hydrostatic linearised expression for orographic momentum flux at 
surface:

𝐹𝐹1 = 𝐴𝐴−14𝜋𝜋2 �
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖2

𝐾𝐾
�ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

𝐹𝐹2 = 𝐴𝐴−14𝜋𝜋2 �
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖
𝐾𝐾

�ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

𝐹𝐹3 = 𝐴𝐴−14𝜋𝜋2 �
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖2

𝐾𝐾
�ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝜌𝜌0𝑁𝑁0(𝑈𝑈0𝐹𝐹1 + 𝑉𝑉0𝐹𝐹2,𝑈𝑈0𝐹𝐹2 + 𝑉𝑉0𝐹𝐹3)

See van Niekerk and Vosper (2021)

Integrate over 
all wave 
directions and 
scales

Integrate over all subgrid scales

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝐴𝐴−1𝜌𝜌0 �
−∞

∞

�
−∞

∞

𝐷𝐷′,𝑢𝑢′ 𝑢𝑢′𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ 𝑘𝑘,𝑙𝑙
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

�ℎ = Fourier transform of surface height



A more scale-aware solution

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝐴𝐴−1𝜌𝜌0 �
−∞

∞

�
−∞

∞

𝐷𝐷′,𝑢𝑢′ 𝑢𝑢′𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 𝐴𝐴−1𝜌𝜌0𝑁𝑁𝑜𝑜4𝜋𝜋2 ∫−∞
∞ ∫−∞

∞ 𝑘𝑘,𝑙𝑙
𝐾𝐾

𝑈𝑈0𝑖𝑖 + 𝑉𝑉0𝑖𝑖 �ℎ
2
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

�ℎ = Fourier transform of surface height

𝐹𝐹1 = 𝐴𝐴−14𝜋𝜋2 �
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𝜌𝜌0𝑁𝑁0(𝑈𝑈0𝐹𝐹1 + 𝑉𝑉0𝐹𝐹2,𝑈𝑈0𝐹𝐹2 + 𝑉𝑉0𝐹𝐹3)

See van Niekerk and Vosper (2021)

Integrate over 
all wave 
directions and 
scales

Hydrostatic linearised expression for orographic momentum flux at 
surface:

Accounts for flow blocking

Integrate over all subgrid scales



Parametrized GW momentum flux 
increases at larger grid-length

Total GW momentum flux is 
almost constant at different grid-

lengths

Resolved GW momentum flux 
decreases at larger grid-lengths

Plots show: zonal mean zonal gravity wave 
momentum fluxes at 7 km above sea level

Resolved GW momentum flux Parametrized GW momentum flux Total GW momentum flux

Increasing 
grid-length

Total momentum flux is more constant across resolutions



Day 5 error at N96 and 
N320 now much closer 

to that at N1280

A more scale-aware solutionImproved stratospheric winds
130 km 40 km 9 km



Can we go further in 
representing mountain 

wave complexity?



van Niekerk et al 
(2022), under 

review

Complex orography

Directional wind shear over complex orography



van Niekerk et al 
(2022), under 

review

Constant wind
Wind turns 90 

degreesComplex orography

Plots show vertical velocity at 
22km in idealised simulations

Directional wind shear over complex orography



τ0 Surface stress vector
(Wave vector)

𝑈𝑈0 Surface wind vector

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 = 𝛽𝛽
𝑧𝑧𝑏𝑏𝑙𝑙𝑘𝑘
ℎ𝑎𝑎𝑎𝑎𝑝𝑝

𝜌𝜌0𝑁𝑁0[ 𝑈𝑈0𝐹𝐹1 + 𝑉𝑉0𝐹𝐹2,𝑈𝑈0𝐹𝐹2 + 𝑉𝑉0𝐹𝐹3 ]

van Niekerk et al (2022), 
under review

What the current scheme does



𝑈𝑈0 Surface wind vector

𝑈𝑈 → 0 momentum deposited at one level

Saturation computed as:

When 𝜂𝜂 𝑧𝑧 > 𝑈𝑈
𝑁𝑁
𝐹𝐹𝑠𝑠𝑎𝑎𝑇𝑇

𝑈𝑈 = wind in direction of wave vector
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τ0 Surface stress vector
(Wave vector)

van Niekerk et al (2022), 
under review

What the current scheme does

𝜂𝜂 𝑧𝑧 = wave amplitude
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τ0 Surface stress vector
(Wave vector)

Wave saturation in sheared flow
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What the current scheme does

𝜂𝜂 𝑧𝑧 = wave amplitude



𝑈𝑈0 Surface wind vector
𝑤𝑤 = wave vector angle

𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦 𝑤𝑤 = 𝛽𝛽
𝑧𝑧𝑏𝑏𝑙𝑙𝑘𝑘
ℎ𝑎𝑎𝑎𝑎𝑝𝑝

𝜌𝜌0𝑁𝑁0 𝑈𝑈0𝐹𝐹1 𝑤𝑤 + 𝑉𝑉0𝐹𝐹2 𝑤𝑤 ,𝑈𝑈0𝐹𝐹2 𝑤𝑤 + 𝑉𝑉0𝐹𝐹3 𝑤𝑤

τ0 Surface stress vectors
(Wave vectors)

Wave saturation in sheared flow

van Niekerk et al (2022), 
under review

What the directionally binned scheme does



𝑈𝑈0 Surface wind vector

𝑈𝑈(𝑤𝑤) → 0 momentum deposited at corresponding level

Saturation computed as:

When 𝜂𝜂 𝑧𝑧,𝑤𝑤 > 𝑈𝑈(𝜙𝜙)
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𝐹𝐹𝑠𝑠𝑎𝑎𝑇𝑇

𝑈𝑈(𝑤𝑤) = wind in direction of wave vectors

τ0 Surface stress vectors
(Wave vectors)

Wave saturation in sheared flow

𝑤𝑤 = wave vector angle
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van Niekerk et al (2022), 
under review

What the directionally binned scheme does

𝜂𝜂 𝑧𝑧 = wave amplitude in wave vector direction



𝑈𝑈0 Surface wind vector

𝑈𝑈(𝑧𝑧)

𝑈𝑈(𝑤𝑤) → 0 momentum deposited at corresponding level

Saturation computed as:

When 𝜂𝜂 𝑧𝑧,𝑤𝑤 > 𝑈𝑈(𝜙𝜙)
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𝑈𝑈(𝑤𝑤) = wind in direction of wave vectors

τ0 Surface stress vectors
(Wave vectors)

Wave saturation in sheared flow

𝑤𝑤 = wave vector angle
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under review

What the directionally binned scheme does

𝜂𝜂 𝑧𝑧 = wave amplitude in wave vector direction
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van Niekerk et al (2022), 
under review

What the directionally binned scheme does

Reduced gravity wave drag at 
lower altitudes

Increased gravity wave drag at 
higher altitudes

Reduced drag

Increased drag
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Hydrostatic

Nonhydrostatic

Animation c/o Jonathan Coney, Uni. Of Leeds

Nonhydrostatic mountain waves are not represented at all (!)

Keller (1997)



Conclusions
Current orographic gravity wave drag parametrizations assume that orography is made up of 
elliptical mountains within each grid-box – this means that the full range of subgrid scales are not 
represented

Representing the orography using Fourier transforms allows us to parametrize the subgrid
orography more faithfully and across scales

This makes the gravity wave parametrization more ‘scale-aware’, and the total gravity wave flux 
more constant across grid-lengths - helping to improve the circulation in the stratosphere at 
coarser grid-lengths

By defining the subgrid orography using Fourier transforms, we are able to account for directional 
effects and the three-dimensional multi-scale nature of orography – perhaps even nonhydrostatic 
waves?
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