Ensemble forecasting & the representation of

physical processes

Simon Lang, Sarah-Jane Lock*, Martin Leutbecher

Research Dept., ECMWF

9 km ENS, 51 Members, 20200913 00 UTC + 41 h Simulated Satellite Images

^{*} sarah-jane.lock@ecmwf.int

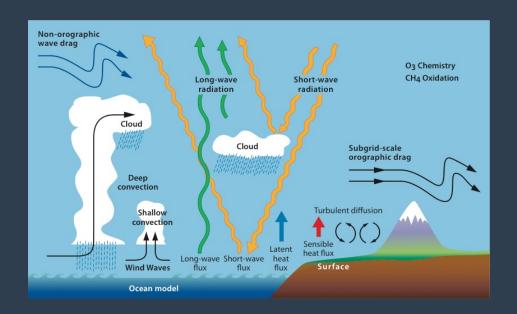
Ensemble forecasting & the representation of physical processes

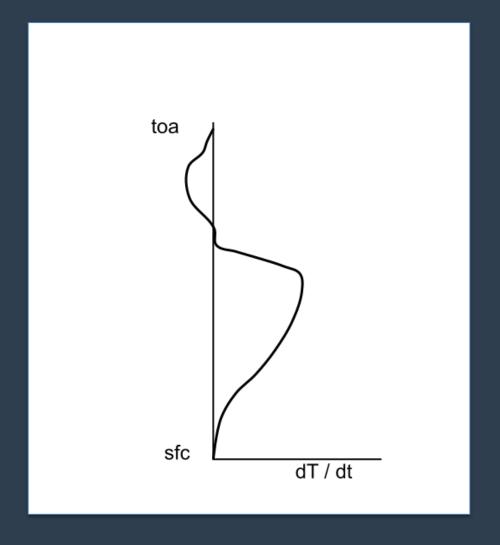
- Ensemble forecasts with the IFS
- Representing model uncertainty for physical processes: present and future
- Assessing model developments with the ensemble

Ensemble forecasts with the IFS ("ENS")

Currently:

- 51 members (1 unperturbed + 50 perturbed)
- TCo639 (~18 km) to day 15 / TCo319 (~36 km) to day 46
- 137 vertical levels (to 0.01 hPa)
- Coupled to NEMO ocean model (1/4 degree, 75 levels),
 ECWAM wave model and LIM2 ice model
- Initial conditions perturbations: ensemble of data assimilations and singular vectors, 5 member ocean data assimilation
- Model uncertainty perturbations: "Stochastic physics"

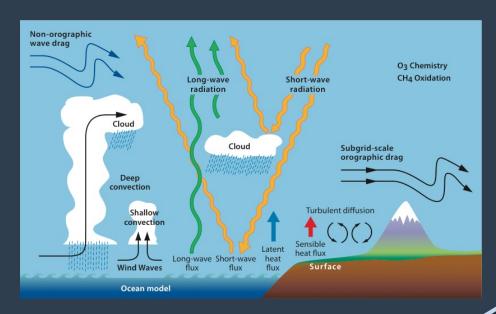

Coming soon...

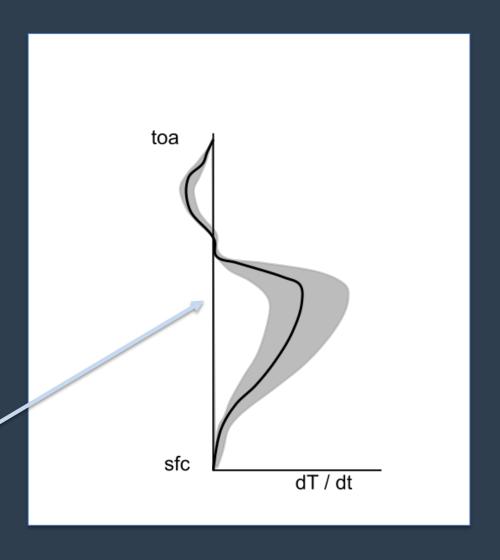


9 km ENS, 51 Members, 20200913 00 UTC + 41 h Simulated Satellite Images

How could we describe the uncertainty in the model physics?

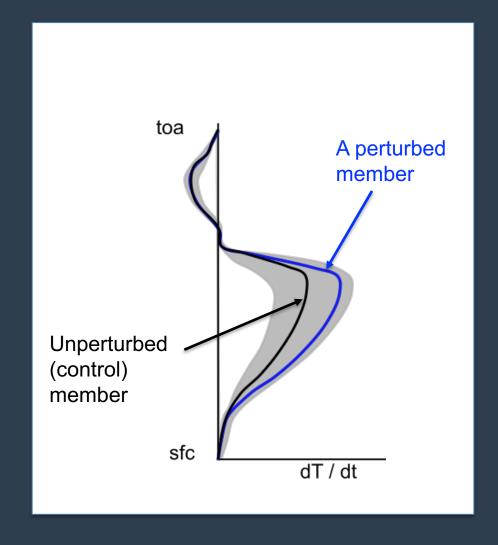
 Consider a profile of model tendencies from the physics parametrisations,
 e.g. profile of *T* tendencies (sfc to toa)




How could we describe the uncertainty in the model physics?

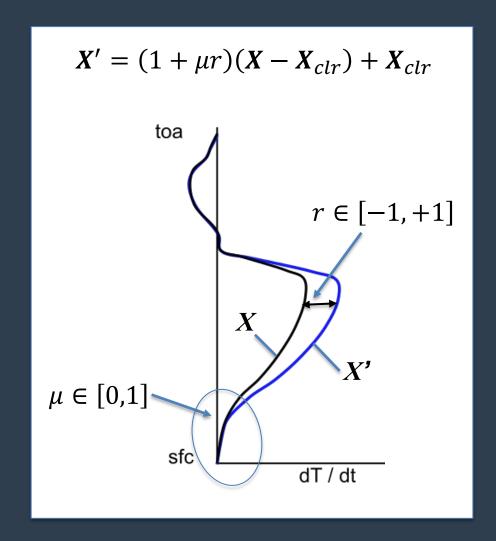
 Consider a profile of model tendencies from the physics parametrisations,

e.g. profile of *T* tendencies (sfc to toa)


• Proposal: some uncertainty due to the physics parametrisations

How could we describe the uncertainty in the model physics?

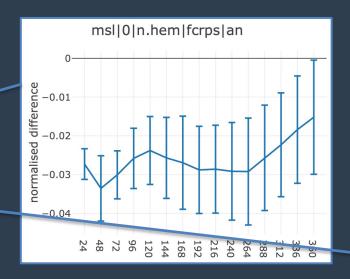
- In the ensemble:
 - Unperturbed member: profile of unperturbed physics tendencies
 - Each perturbed member: a unique profile of perturbed physics tendencies

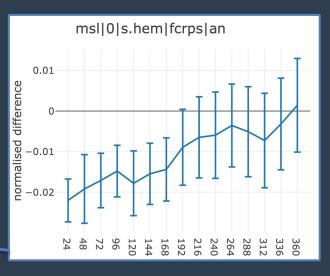


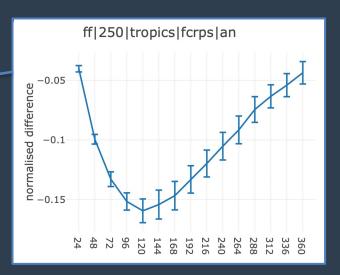
How *do* we describe the uncertainty in the IFS model physics?

Stochastic Physics: SPPT

- <u>S</u>tochastically <u>P</u>erturbed <u>P</u>arametrisation
 <u>T</u>endencies
- 1998: implemented (*Buizza et al., 1999*)
- 2009: revised (*Palmer et al., 2009*)
- 2016: global fix (*Davini et al., 2017*)
- 2018: clear-skies revision & seamless application (EDA .. seasonal) (*Lock et al.*, 2019)

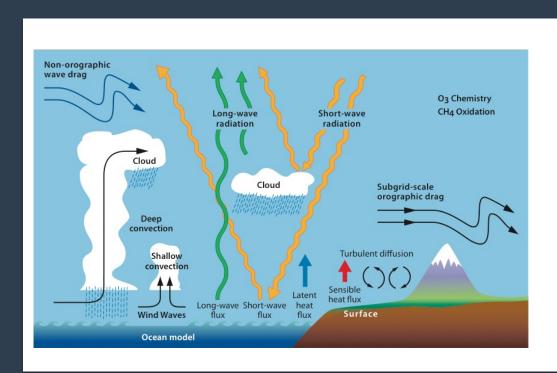


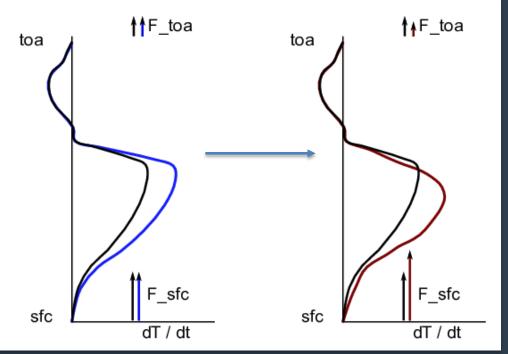

SPPT: impact on ensemble skill --- fair CRPS


degradation improvement

tropics n.hem s.hem fcrps fcrps fcrps an z msl ff 2t 10ff@sea swh mwp

Impact of removing SPPT


Experiments:


- CY47R3
- 9km ENS (TCo1279)
- 8+1 members
- Starts: every day, Jun+Jul+Dec+Jan 2020/21
- 00/12 UTC
- Forecast period: 15 days

Future: Stochastically Perturbed Parametrisations (SPP)

- Under development in recent years.
- In the IFS, operates in: radiation, vertical mixing, cloud and convection schemes
- Represents MU close to their sources, preserves local conservation properties, enables multivariate description of uncertainties

SPP: Stochastically Perturbed Parametrisations

- Under development in recent years
- In the IFS, operates in: radiation, vertical mixing, cloud and convection schemes
- Represents MU close to their sources, preserves local conservation properties, enables multivariate description of uncertainties
- Ollinaho et al. (2017, QJRMS; "ref"):
 - 19 quantities perturbed
 - 2,000 km correlation scales
 - generated less spread (skill) than SPPT

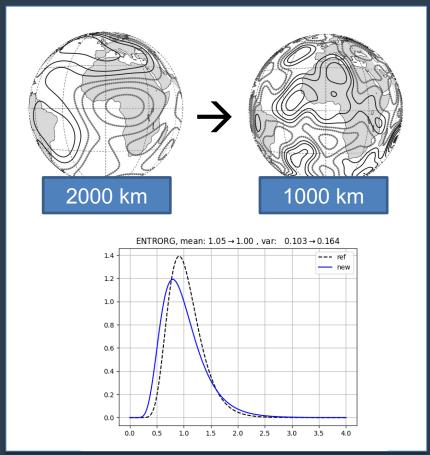
SPP: Stochastically Perturbed Parametrisations

- Under development in recent years
- In the IFS, operates in: radiation, vertical mixing, cloud and converted
- Represents MU close to their sources, preserves local conservate enables multivariate description of uncertainties
- Ollinaho et al. (2017, QJRMS; "ref"):
 - 19 quantities perturbed
 - 2,000 km correlation scales
 - generated less spread (skill) than SPPT
- Lang et al. (2021, QJRMS; "new"):
 - 27 quantities perturbed
 - 1,000 km correlation scales
 - changes in mean/variance to some random fields
 - generates similar spread & skill to SPPT

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

TABLE 2 Perturbed parameter settings							
		new					
Ц	Parameter ID	Role of Parameter	Dist	σ		Scheme	
١.	Turbulent diffusion	Turbulent diffusion and subgrid orography:					
	CFM_OC	Transfer coefficient for momentum over ocean	LN		lry convec- L / 0.33	Mean / Media	
	CFM_LA	Transfer coefficient for momentum over land	LN		lry convec- L / 0.78	Mean / Media	
	RKAP	von Kármán constant	LN		dry con- PBL / 0.26	Mean / Media	
	TOFDC	Coefficient in turbulent orographic form drag scheme	LN	0.78		Mean	
	HSDT	St. dev. of subgrid orography	LN	0.52		Mean	
	VDEXC_LEN	Length-scale for vertical mixing in stable boundary layer	LN	1.04		Mean	
	Convection:						
	ENTRORG	Entrainment rate	LN	0.39		Mean	
	ENTSHALP	Shallow entrainment rate	LN	0.39		Mean	
	DETRPEN	Detrainment rate for penetrative convection	LN	0.39		Mean	
	RPRCON	Conversion coefficient cloud to rain	LN	0.52		Mean	
	CUDU	Zonal convective momentum transport, deep convection	N	1.22		Mean	
	CUDV	Meridional convective momentum transport, deep convection	N	1.22		Mean	
	CUDUS	Zonal convective momentum transport, shallow convection	N	1.33		Mean	
	CUDVS	Meridional convective momentum transport, shallow convection	N	1.33		Mean	
	RTAU	Adjustment time-scale in CAPE closure	LN	0.78		Mean	
	ENTSTPC1	Shallow entrainment test parcel entrainment	LN	0.39		Mean	
١.	Cloud and large-scale precipitation:						
	RAMID	Relative humidity threshold for the onset of stratiform condensation		LN	0.13	Mean	
	RCLDIFF	Diffusion coefficient for the evap ration of cloud at subgrid clou edges		LN	1.04	Mean	
	RLCRITSNOW	Cloud ice threshold for autoconve sion to snow	er-	LN	0.78	Mean	
	RAINEVAP	Rain evaporation rate		LN	0.65	Mean	
П	SNOWSUBLIM	Snow sublimation rate		LN	0.65	Mean	
	QSATVERVEL	Vertical velocity used to calculate the adiabatic temperature change for saturation adjustment		LN	0.39	Mean	
	Radiation:						
l	ZDECORR	Cloud vertical decorrelation height	t	LN	0.78	Mean	
	ZSIGQCW	Fractional st. dev. of horiz. distrib tion of water content	u-	LN	0.52	Mean	
ľ	ZRADEFF	Effective radius of cloud water as ice	nd	LN	0.78	Mean	
	ZHS_VDAERO	Scale height of aerosol normal ver cal distribution	ti-	LN	1.04	Mean	
	DELTA_AERO	Optical thickness of aerosol		LN	0.78	Mean	

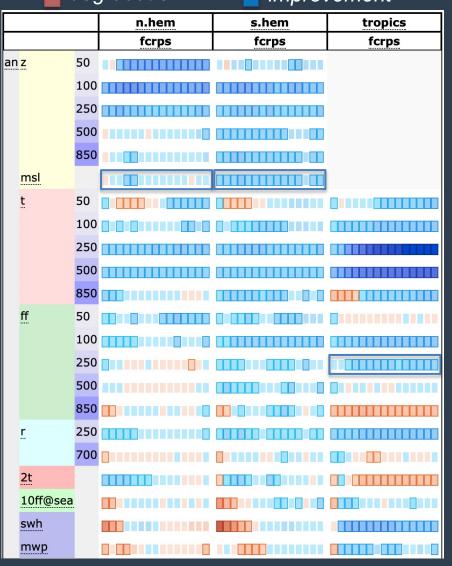
SPP: Stochastically Perturbed Parametrisations

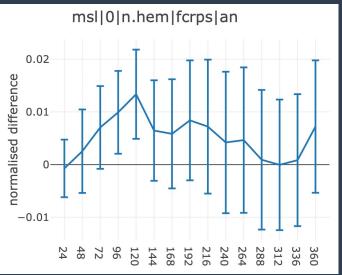

- Under development in recent years
- In the IFS, operates in: radiation, vertical mixing, cloud and convection schemes

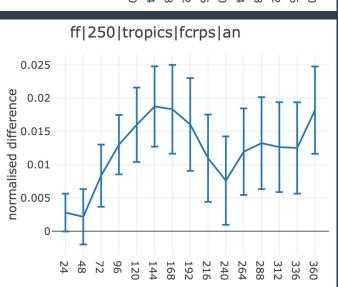
Represents MU close to their sources, preserves local conservation properties,

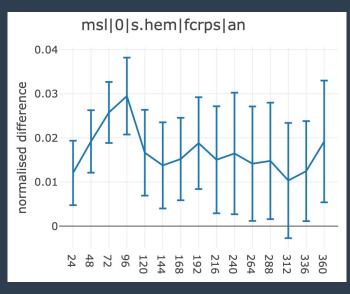
enables multivariate description of uncertainties

- Ollinaho et al. (2017, QJRMS; "ref"):
 - 19 quantities perturbed
 - 2,000 km correlation scales
 - generated less spread (skill) than SPPT
- Lang et al. (2021, QJRMS; "new"):
 - 27 quantities perturbed
 - 1,000 km correlation scales
 - changes in mean/variance to some random fields
 - generates similar spread & skill to SPPT



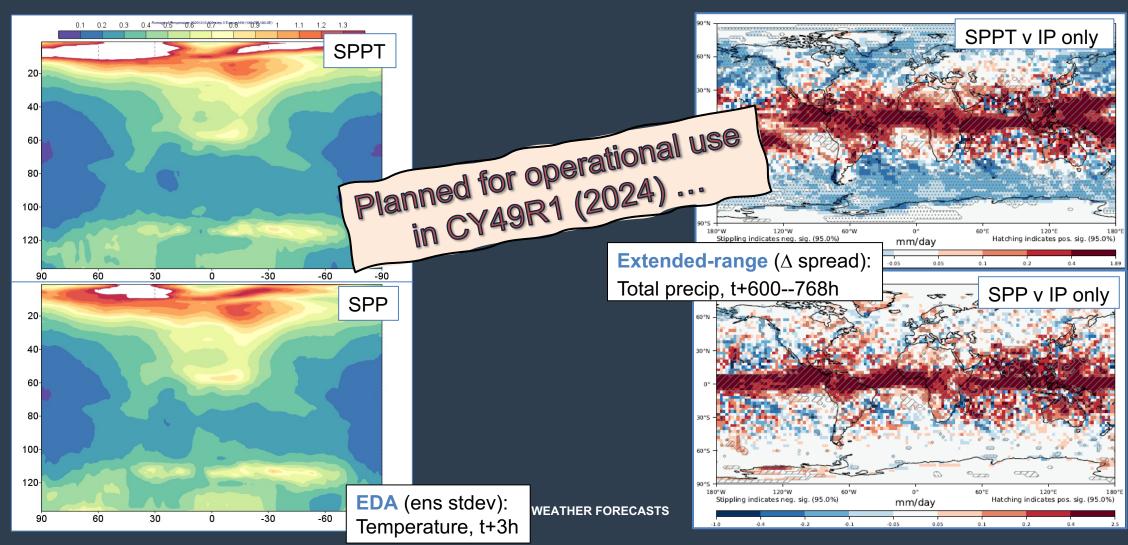

Impact of SPP on skill of ensemble forecasts: fair CRPS





From SPPT to SPP

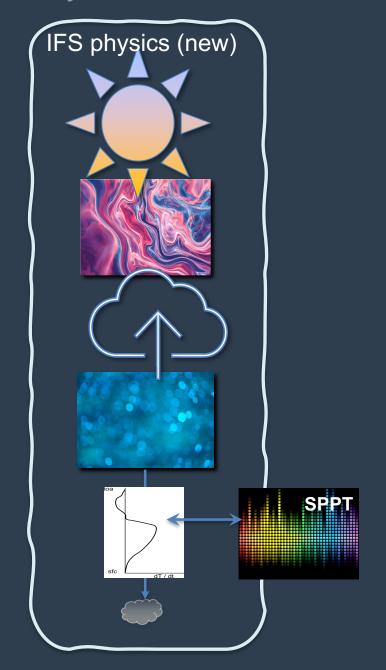
Experiments:


- CY47R3
- 9km ENS (TCo1279)
- 8+1 members
- Starts: every day,
 Jun+Jul+Dec+Jan 2020/21
- 00/12 UTC
- Forecast period: 15 days
- IC perturbations: EDA, SVs, ocean ICs

Representing model uncertainty for physical processes

• Ongoing: testing SPP in all ensemble forecast configurations:

EDA, medium-range, extended-range, seasonal


Assessing model developments with the ensemble

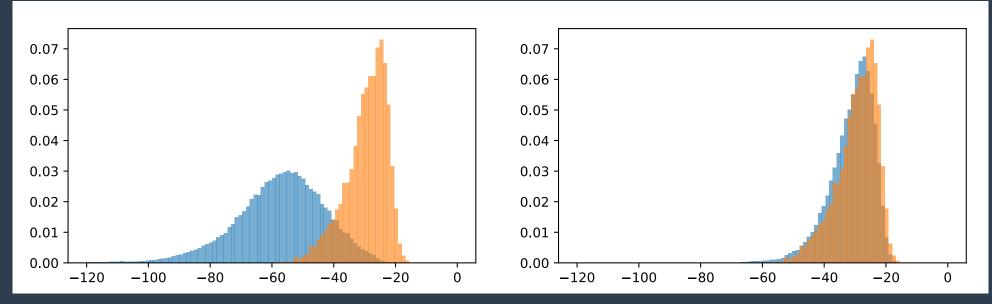
- @ECMWF: IFS ensemble "cheap" experimentation for model developments:
 - 8 perturbed members
 - TCo399L137, ORCA1_Z75
 - Starts: 00Z, DJF & JJA, every day
- Can still be surprises ... A cautionary tale!

Recent testing for 9km ensemble: a cautionary tale

Recent testing for 9km ensemble: a cautionary tale

IFS physics (new)

+ 9km resolution ensemble → MODEL CRASHES!


Frequency: ~1 in 500 forecasts

~1 crash per week in ENS

Diagnosis:

Perturbed forecasts (SPPT) produce significantly larger maximum vertical velocities than previously.

Solution: remove saturation adjustment tendency from SPPT.

Minimum omega values, e

0.07

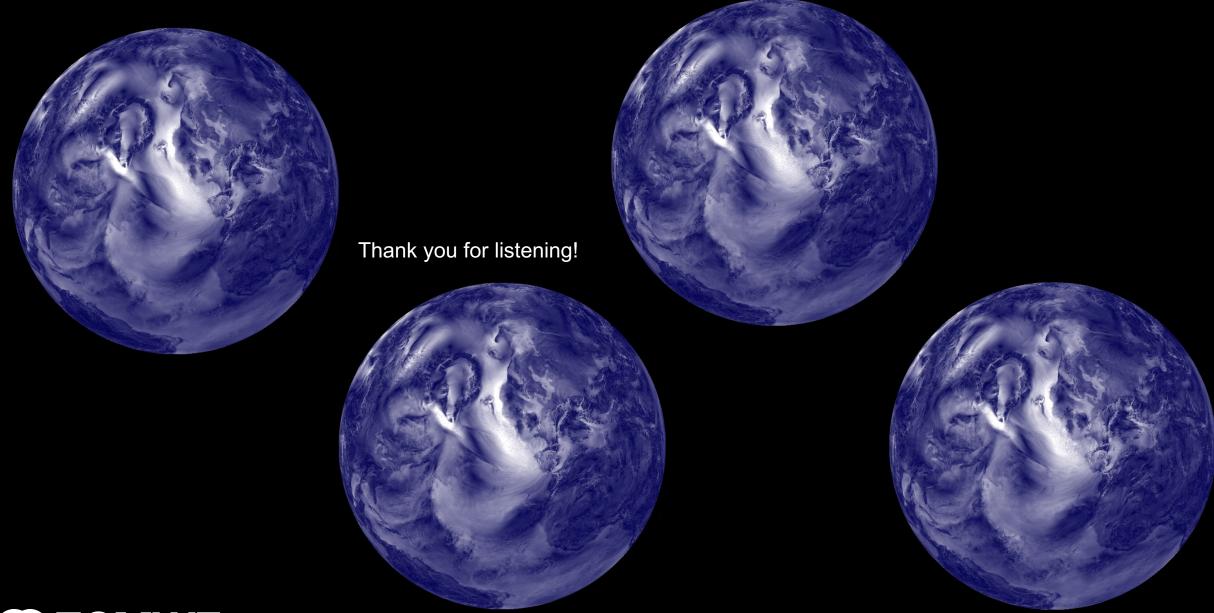
0.06

0.05

Left: new IFS physics
Right: new IFS physics

m

perturbed members | control members


Summary

- Ensemble forecasts can represent the variability in physics processes
- The perturbed forecasts should retain the physical consistency of the unperturbed model
- Developments in the unperturbed model should be tested & assessed in the ensemble

https://events.ecmwf.int/event/290/

Ensemble forecasting & the representation of physical processes

