How to represent deep convection at km-scale resolutions?

Tobias Becker

in collaboration with Peter Bechtold, Irina Sandu, Richard Forbes, Thomas Rackow, Xabier Pedruzo and others

Development Cycles in nextGEMS

- development cycles with aim to run 30 year coupled simulations at km-scale resolution (4.5 / 3 km)
 - technical challenges: new supercomputer environments, coupling IFS to two ocean models (Nemo & Fesom), unprecedented simulation lengths, huge data amounts
 - scientific challenges: water and energy conservation, TOA radiation budgets, climate statistics

Wind gusts over Europe (N. Koldunov, AWI)

Precipitation statistics in nextGEMS Cycle 2

 zonal mean precipitation strongly overestimated over NH Pacific ITCZ with Deep Off

Precipitation statistics in nextGEMS Cycle 2

 zonal mean precipitation strongly overestimated over NH Pacific ITCZ with Deep Off precipitation too intense with Deep Off and not intense enough with Deep On

Precipitation over Pacific ITCZ in nextGEMS Cycle 2

What are possible problems? (at 1-9 km resolution)

- some parameters in microphysics assume that convection occurs only in part of grid cell
- horizontal mixing between updraft and environment not resolved
- processes that trigger deep convection not resolved

- some parameters in microphysics assume that convection occurs only in part of grid cell
 increase relative humidity threshold for evaporation of hydrometeors from 0.8 to 1
- horizontal mixing between updraft and environment not resolved
- processes that trigger deep convection not resolved

- some parameters in microphysics assume that convection occurs only in part of grid cell
 increase relative humidity threshold for evaporation of hydrometeors from 0.8 to 1
- horizontal mixing between updraft and environment not resolved
 increase spectral diffusion by a factor of 100
- processes that trigger deep convection not resolved

- some parameters in microphysics assume that convection occurs only in part of grid cell
 increase relative humidity threshold for evaporation of hydrometeors from 0.8 to 1
- horizontal mixing between updraft and environment not resolved
 increase spectral diffusion by a factor of 100
- processes that trigger deep convection not resolved
 keep deep convection a little bit active with strongly reduced cloud base mass flux

- some parameters in microphysics assume that convection occurs only in part of grid cell
 increase relative humidity threshold for evaporation of hydrometeors from 0.8 to 1
- horizontal mixing between updraft and environment not resolved
 increase spectral diffusion by a factor of 100
- processes that trigger deep convection not resolved
 keep deep convection a little bit active with strongly reduced cloud base mass flux

- some parameters in microphysics assume that convection occurs only in part of grid cell
 increase relative humidity threshold for evaporation of hydrometeors from 0.8 to 1
- horizontal mixing between updraft and environment not resolved
 increase spectral diffusion by a factor of 100
- processes that trigger deep convection not resolved
 keep deep convection a little bit active with strongly reduced cloud base mass flux
 - → handle hydrometeors explicitly by detraining 30% to the microphysics

- some parameters in microphysics assume that convection occurs only in part of grid cell
 increase relative humidity threshold for evaporation of hydrometeors from 0.8 to 1
- horizontal mixing between updraft and environment not resolved
 increase spectral diffusion by a factor of 100
- processes that trigger deep convection not resolved
 keep deep convection a little bit active with strongly reduced cloud base mass flux
 - → handle hydrometeors explicitly by detraining 30% to the microphysics
- 12 day simulations at 9 km resolution, started on Jan 20, 2020 (as nextGEMS)

- precipitation intensity is overestimated with Deep Off and underestimated with Deep On
- change assumption in microphysics gives small improvement

- precipitation intensity is overestimated with Deep Off and underestimated with Deep On
- change assumption in microphysics gives small improvement
- 100x more diffusion reduces
 precipitation intensity

- precipitation intensity is overestimated with Deep Off and underestimated with Deep On
- change assumption in microphysics gives small improvement
- 100x more diffusion reduces
 precipitation intensity
- slightly active d.c. scheme gives substantial improvement

- precipitation intensity is overestimated with Deep Off and underestimated with Deep On
- change assumption in microphysics gives small improvement
- 100x more diffusion reduces
 precipitation intensity
- slightly active d.c. scheme gives substantial improvement
- add RH_c=1.0 improves precipitation distribution for lower intensities

- precipitation intensity is overestimated with Deep Off and underestimated with Deep On
- change assumption in microphysics gives small improvement
- 100x more diffusion reduces
 precipitation intensity
- slightly active d.c. scheme gives substantial improvement
- add RH_c=1.0 improves precipitation distribution for lower intensities
- similar with increased detrainment of hydrometeors

Zonal mean precipitation

Precipitation over Pacific ITCZ

Cloud top height: analysed with satellite image simulator

SEVIRI Meteosat10, Channel 9 (10.79µm); Pacific ITCZ

 cloud top height best represented with Deep On

 but mid-level and shallow clouds best represented with increased hydrometeor detrainment

Mean vertical profiles (NH Pacific ITCZ)

- Deep Off: too dry above boundary layer
 - Deep On: moister than ERA 5
 - 1/6 M_b: too cold at 600 hPa
- RH_c=1.0: too cold and too moist at 800 hPa because of hydrometeor evaporation

Mean vertical profiles (South America)

 Deep Off: much too warm over South America

 1/6 M_b, RH_c=1.0 and d_{eff}=0.3: good agreement with ERA5

4.5 km vs 9 km resolution

zonal mean precipitation shows no significant resolution dependencies

 Deep On & setups with reduced M_b: increase of precipitation intensity at 4.5 km

How to represent deep convection at km-scale resolutions?

- assumptions made in physics parametrisations need to be revisited
 - \rightarrow example: microphysics scheme (areas with rainfall are starting to be resolved)
- turbulent mixing of updraft with environment is unresolved and underestimated by current IFS physics
 → a new scheme is required that locally increases updraft mixing with the environment
 (e.g., TKE scheme)
- resolved deep convection is only triggered under very strong forcing (strong low-level convergence), when the atmosphere is already too unstable
 - → one possible solution is to keep the deep convection scheme slightly active
- sensitivity experiments succeed in finding a setup with realistic precipitation characteristics (zonal mean, intensity, spatial pattern) but fail to represent larger mesoscale convective systems (like squall lines)

