3rd Workshop on Machine Learning for Earth Observation and Prediction

ECMWF esa

- CHAIRS: Rochelle Schneider, Alan Geer, Alessandro Sebastianelli
- 16 in person, 74 virtual
- Organisations: Academia, Operational NWP/Forecasting, Industry, Space agencies

Working Group 2:

3rd Workshop on Machine Learning for Earth Observation and Prediction

ECMWF esa

- 1. CURRENT ML APPLICATIONS IN THE THEMATIC AREA:
 - a) Solar Energy/Radiation Forecasting
 - b) Wildfires Detection
 - c) Snow/Flooding Detection, Depth and Extent Estimation
 - d) Precipitation Retrievals
 - e) Environmental Health
 - f) Pollution
 - g) Oil spills
 - h) Oceanography/Chlorophyll detection
 - i) Crops classification
 - j) Urbanization
 - k) Geodesy
 - I) Clouds detection/motion modelling

- 1. CURRENT ML TOOLS AND APPROACHES IN THE THEMATIC AREA:
 - a) Segmentation
 - b) Classification/Detection
 - c) Forecasting
 - d) Regression
 - e) Domain Translation
 - f) Super Resolution/Downscaling

- 2. LIMITATIONS, CHALLENGES AND OPPORTUNITIES:
 - a) Reproducibility \rightarrow Scalable \rightarrow Operational \rightarrow Maintainable \rightarrow Transferrable \rightarrow Explainable
 - b) Continuous learning / retraining
 - c) Usability for society
 - d) Physics aware ML \rightarrow prior physical knowledge + constraints
 - e) Interoperability and integration with existing non ML tools
 - f) Lack of training data
 - a) citizen science + gamification (non-expert can label, e.g. zooniverse.org)
 - b) Domain expert required for labelling
 - c) Ground truth observation and generalization (e.g. from Europe to New Zealand)
 - g) supervised and semi-supervised
 - a) Few shot learning (zebra)
 - b) Meta-learning (learning how to learn)
 - c) Non domain foundation models (e.g. cats and dogs VS crop types)

Working Group 1: Machine Learning for Earth Observations

- 3. ADVANTAGES (DISADVANTAGES?) OF ML TECHNIQUES FROM TRADITIONAL STATISTICAL METHODS:
 - a) Fill the gaps around existing classical models
 - b) ML for diagnostics / evaluation / understanding outside of an existing framework
 - c) Using ML to do things that existing systems can't do
 - a) Replacing part of the process done by humans
 - b) Complex non linear correlations
 - c) Finding complex patterns in large datasets
 - d) NLP for mining/indexing unstructured data
 - e) Sector-specific transformative applications: forecasting future losses and gains in solar energy production \rightarrow reducing CO₂ emissions
 - f) Speed up in model performance and outcomes (training is slow, prediction is fast)

4. FUTURE DIRECTIONS

- a) Federated learning
 - a) data protection issues (e.g. health data)
- b) AI on board satellites
 - a) Events detection (smart satellites)
 - b) Data compression / prioritization
 - c) Cooperating / connected satellites
 - d) Make sure we still keep the raw data for future learning
- c) Smart sensors \rightarrow connected environment \rightarrow smart observing systems / grids
- d) Emergent intelligence \rightarrow aggregation of more limited systems / agents
- e) Embodied intelligence \rightarrow proactive human-like learning
- f) Data fusion \rightarrow connecting diverse sources of data

- 5. EXTRA DISCUSSION CLOUD AI BASED PLATFORMS
 - a) More expensive than in house computing resources (re-train costs double)
 - b) On the other hand TPUs and GPUs speed a lot the processing
 - c) Multiple users interaction
 - d) Open online services (e.g. google earth engine) with private backends
 - e) Lock-in by the "open online services"
 - f) Rapid scale up
 - g) Lack of support
 - h) Data protection and security