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Current path from observations to operational forecast
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Transition focus to:
High quality, scientifically validated, curated data products
that will drive training and execution of Al/ML-based methods

Observations O00's
Obs data volume
e Optimizing Al/ML on:
Data Assimilation ¢ kIt to observations
o Agreement with
PDE - closure Al/ML models pnysical \aws
models ¢ Forecast skill

o Resolving multiple
scales

Reanalysis datasets (or data generators)

Cloud storage, Hybrid traditional / Data-driven
open access to public, Al/ML community Al/ML models applications / forecasts
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Data Assimilation:
what is the
fundamental problem?
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Observations (now)

INnputs:

Uncertainty in
observation values,
locations, form, eftc.

Data Assimilation

Estimate the trajectory of a
dynamical system under
uncertain conditions

We assume we are working with
very large systems - e.q. O(109) -
I.e. we are only interested in
scalable methods

Physical
constraints

Uncertainty in how physical
laws apply after formulating a
tractable representation of the

problem (e.q. discretization,

grid resolution, numerical
solvers, parameterized
processes, elc.)



Observations (now)
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Growing problems:
 Modern DA ignores a lot of

observational data in operational ® 'S s ®
forecast applications
* Models are moving to higher and Observations (now)

higher resolutions, making even
state-of-the-art DA methods
Observation "

sometimes too costly N
error !
estimation

Applications:

Reanalysis
application Data Assimilation

_ Estimate the trajectory of a

dynamical system under
uncertain conditions

D
<

Model tuning
\ 3 application
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What is the path

towards an end-to-end
Al/ML DA solution?
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MetNet ( S@nde rb y et a [ 20 20) Initial Conditions Ensem{l;le of P)r,ed}ictions Input Data Predictivpe()],)&s)tribution
19---93m

* Taking inputs from ground radar and satellite measurements ) DNNj (%)
» Predicting point-wise precipitation probabilities o= $ %
X —>»

T, —> T, T, » T,
Physics Simulation Neural Network Forward Pass

: s —
Neural weather model @gNet b ﬁf‘ ‘
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Figure 4: Properties of NWP and NWMs. Left: NWP performs a deterministic physical simulation
starting from the initial conditions. The predictive uncertainty is estimated from an ensemble of
predictions each run with slightly different initial conditions. Right: The NWM treats the current
observations as direct inputs to a DNN, directly estimating the distribution over future conditions

p(y|x).
Figure 8: NOAA better quality masks. The loss is only calculated for targets covered by the mask
to minimize issues with wrongly labelled tagets.
Phy.sica‘lmgdelHR;zR‘:g_" 5 : ‘, . . , X Cha”enges -
i e * Only observed gquantities are forecasted, known physical relationships

between observed and unobserved processes are not leveraged

* Observations are sparse and noisy, but are treated as ‘ground truth’,
observation uncertainty is not characterized

* Dynamic uncertainty is not characterized (i.e. forecasts are ‘probabilistic’,
but not dynamically so)
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Synchronize forecast system
with nature via observations
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 DAs ‘implicit’ - it is only used to generate the training data.

 There is a chain of efforts aimed at increasing efficiency and
performance, to allow increasing resolution in the ML forecast
model

Leaderboard
Z500 RMSE (3 T850 RMSE
Model | 5 days) (3 /5 days) Notes Reference
[m?/s?] [K]
. ECWMF physical model Rasp et al.
Operational IFS 154 [ 334 1.36/2.03
peration / / (10 km) 2020
Rasp and Thuerey 2020 Resnet with CMIP Rasp and
'SP and Thuerey 268 | 499 1.65 ] 2.41 - N
(direct/continuous) pretraining (5.625 deg) Thuerey 2020
Lower resolution physical Rasp et al.
IFS T63 268 /463 1.85/2.52
/ / model (approx. 1.9 deg) 2020
Weyn .et al. 2020 373/ 611 1.98 /2.87 UNet )Nith cube-sphere Weyn et al.
(iterative) mapping (2 deg) 2020
Stacked ResNets with
. I Clare et al.
Clare et al. 2021 (direct) 375/627 211/ 2.91 probabilistic output 2021
(5.625 deg)
Lower resolution physical Rasp et al.
IFS T42 489 [ 743 3.09/3.83
/ / model (approx. 2.8 deg) 2020
. Climatology for each Rasp et al.
Weekly climatol 81 3.
eexly climatology 6 50 calendar week 2020
. Rasp et al.
P t 36/1033 423/4.
ersistence 936/10 | 4.56 2020
. Rasp et al.
limatol 107 .51
Climatology 075 5.5 2020

FourCastNet at 0.25° (Pathak et al., 2022)

m/s
= 5 10 15 20

(a) Lead Time: O hours (I.C.)

65.0
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2

s 23475 209.75 184.75

46.25
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(b) Lead Time: 96 hours 8.75

FourCastNet :
65.0 :

P 4425

23.5

2.75
234.75 209.75 184.75

Truth

209.75 172.25 134.75

97.25

Typhoon Mangkhut__,:’:

Challenges -

 Even 0.25° is fairly low resolution compared to operational
forecast system (e.g. 9km global IFS, or 1-3km TC
applications, or 1/25° ocean model run by US Navy). ML
models at these low resolutions still showing
significant numerical diffusion.

* Limitation using reanalysis as ‘truth’: While training on
reanalysis data may alleviate some needs for model bias
correction, it introduces a whole new range of problems
(unphysical discontinuities, limits on temporal and spatial
resolution, unknown error characteristics)
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If we no longer pretend that observations and reanalyses are perfect
(i.e. we begin to think about the problem from a data assimilation perspective),
then...

Challenge:
Fundamental questions -

Are reanalysis datasets an adequate source of training data for ML?
Or, are pure simulation datasets more effective?
How then will biases & systematic errors be handled?
Do we need these at all - or can we learn directly from observations plus basic
physics constraints?
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Input Hidden Output

“A Deep-Learning-Based Microwave “A deep learning approach to et e g4
Radiative Transfer Emulator for DA and fast radiative transfer” @

Temperature profile —

Remote Sensing” Liang et al. (2022) Stegmann et al. (2022) Nozs N

Diff BTs (FCDN-CRTM) CH8, Test Set Pressure profile —
ifference BTs . , Test Se NS P - -
: - 0.6 ‘ Q » Transmittance
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30°S K) ‘ ‘K J (’ﬂ\’\ > e Speed Fig. 3. Sketch of the atmospheric transmittance regression using a hidden layer
i{’] ] e ' neural network.
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Fig. 1. Flowchart of the transmittance regression approach.
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Forecast: s/

Perfect model

RNN prediction
o W N = O

. . . hidden/reservoir state system
Penny et al. (2022), integration woo wor woz (1) Aseparate RNN is RNN: Gt
of RNN (RC) surrogate models w ™ trained for each patch S0 = tanh(p W, 5, + oW, 1)
. . Uy = WouSiy
with conventional DA methods wilowll w2 1 1
prediction
hidden/reservoir state space ng?t Wi'ﬂ'ltJ Wguzt (2) The DA methOd |S
ot applied locally (3) The local states are updated and
h(?); : ) . all points within a halo are provided
X' =W, (h(1)) Obsenations: ¥ v L $ith) to initialize the next local forecast
i G S model state space wll Sz(tn) DA 55 (t,)
out . . - AA — — — -
N = 5 Wou Wou Wou s{(t,) ${(t,1)
X(M)(t : * _Sf:z(tn)_ _Sm(t")_ | ‘i —— 55 (t,) A
y’ =HxM(®)) . WL WL W2 ;T
< v observation space / * x ¥~ He Wouls(®) ° — W’1”1 Wii‘lt Sult) s/ (t )
synchronization manifold observation innovations , , 2.2 ' B B | Pm\*n+1/ |
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5 y@
% 2.00
> 35
S nature state space_ 1.75
O . 30
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26 Penny et al. (2022) https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002843
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Evaluation of Reservoir for Lorenz96
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Bayesian optimization of macro-scale

parameters improves consistency
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Lyapunov VPT

Lyapunov VPT
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Challenqge:

Visual comparisons are not adequate tests for geophysical AI/ML applications.
RMSE is not sufficient to measure the behavior of an Al/ML forecast model.
Can we find better metrics for geophysical Al/ML applications?

Challenge:

Can we develop Al/ML models that respond correctly to perturbations in initial
conditions? What is the best way to measure this?

29



to + 160 min

Prediction

to + 320 min

4.60 14.98 25.35 35.72
106 /3
104 ~
Truth ‘\ Prediction
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102+ S— SO ——— S—— S ———
103 102 103 102

Wavenumber, |K|, (rad / km)

Wavenumber, |K|, (rad / km)

46.09

— Courtesy: Timothy A. Smith, CIRES / NOAA PSL

- Parallel NVAR prediction of Surface
Quasi-Geostrophic Turbulence

- Synoptic & into mesoscales well
captured

- Scales below this unconstrained

Result: overly smooth prediction &
spectrum that decays too rapidly

Result: smoothing effect becomes
more dramatic as temporal sampling
frequency decreases

Takeaway: Training on subsampled
output (e.g. reanalysis) reduces
“effective” emulator resolution

Aray = Chunk

Bytes 228.28 MB S7.07T M8

L/ DASK — = -

Type foat32 numpyndarray
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Geophysical Al/ML methods need some degree of generalizability to apply to
unseen data, but they must also retain the desired error characteristics and detail at
finer scales.

Challenge:

How do we push to resolutions finer than large-scale synoptic flow while controlling
numerical diffusion to acceptable levels?
What are the requirements for a next generation of ‘reanalysis’ products whose
primary purpose may be to support Al/ML applications?
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Full replacement of parameterizations in NWP models - Belochitski and Krasnopolsky (2021)
this has a IOng hi Story e.g. (Cheva”ier et al. 1998, 2000, A. Belochitski and V. Krasnopolsky: Robustness of NN emulations of radiative transfer parameterizations 7433
Krasnopolsky et al. 2005, 2008; Krasnopolsky and Fox- (o) OLR (b) .

254

Rabinovitz, 2006) o) B

251
250-
249
248
247
2464 e [0/
245 ‘
244 ; — ; . ; ; : : ; ’ : :
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Belochitski and Krasnopolsky (2020)
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Figure 1. Coupling of the NN model physics to GF'S. Step 2 may be performed significantly less frequently than Step 1 that 324FEB M;\R AF"R M'AY Jle Jl'JL Al'JG FEB MI'\R AISR M'AY Jle Jl'JL Al'lG
2018 2018

W/m2

and
Surface
Physics

is performed at each time step.

(e) UpLW Sfc (f) UpSW Sfc

41
408-
405+
402
3991
CTL run .
CTL Temeperature, K, Avg=246.30 , 393 -

| 390 o
FEB MAR APR MAY JUN JUL AUG FEB MAR APR MAY JUN JUL AUG
2018 2018

W/m2

Differences NN - CTL Bias = 9.10° m/s I Bias = 2.1 0_3'K ” Figure 4. Time series of a running 10 d mean covering 1 February—1 August 2018 for (a) outgoing LW at TOA, (b) outgoing SW at TOA,
e et (c) downwelling LW radiation at the surface, (d) downwelling SW radiation at the surface, (e) upwelling LW radiation at the surface, and (f)

A ’ ‘. upwelling SW radiation at the surface. Black curves — results produced by HGFS; green — results by GFS.

6 i | ]

| | Opportunity: Ultimately, some form of hybrid combination of

Figure 2. Zonal and time means of an overage over 24 10-day forecasts for U (left column), V (central column), and ] . . .

temperature (right column). Upper row — results produced by HGFS, medium — by GF'S, and the lower row the difference CO nve nth n al n U m e rl Cal m Od e I I n g an d d ata-d rlve n/ M L

(HOES = GIS). Vertical coordnate shovs modet fevelmmber parameterization seems like a promising approach for trade-offs
- In accuracy and efficiency in the long-run
= 33




Considering Hybrid models:

Challenge:

As numerical forecast models are modernized (e.g. written in new languages that
support differentiation, and designed to take advantage of GPUs), can Al/ML
solutions maintain a competitive edge (in terms of computational cost) over
conventional modeling?
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Bonavita and Laloyaux (2020); Laloyaux et al. (2022)
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Chen et al., (2022) correction of systematic errors

(b) concatenated 6h forecast with NN correction
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Figure 4. Schematic illustration of the integration of the error corrections
with the workflow of (a) sequential data assimilation and (b) concatenated 6h
free forecasts.
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Pathak et al. (2018) Arcomano et al. (2022)
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Challenge:

How much state-dependent (conventional) model error can we learn from
comparison with observations?

How do we separate systematic observation errors from systematic model forecast
errors?
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What is the grand vision for
integrating AIYML with data
assimilation?
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Early steps in this direction:
Bocquet, Brajard, Carrassi, and Bertino

“Data assimilation as a learning tool
to infer ordinary differential equation
representations of dynamical
models” (Bocquet et al., 2019)

“Combining data assimilation and
machine learning to emulate a
dynamical model from sparse and
noisy observations: a case study
with the Lorenz 96 model”
(Brajard et al., 2020)

“Bayesian inference of chaotic
dynamics by merging data
assimilation, machine learning
and expectation-maximization”
(Bocquet et al., 2020)

=

C. Buiza et al., (2022)
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Integration of Kalman Filters with Reduced
Order Models and Neural Networks
(oceanographic problem)

DL model based on the integration of
Variational Data Assimilation with Encoder-
Decoder technologies (air-pollution forecasting)
DL approach that integrates Convolutional
Neural Networks with Kalman Filters and
variational DA (pharmacokinetic modeling)

DL approach that integrates variational Data
Assimilation with neural networks for parameter
estimation (Economic system)

DL approach that integrates Gaussian
Processes with Variational Data Assimilation
(optimal sensor placement)



Opportunities:

Technical:

Al/ML methods can lead to improved understanding about what properties a skillful forecast model must have
There are no strict guidelines to what an AI/ML solution should look like, and a likely future is one in which we have
hybrid combinations of conventional and Al/ML modeling

All future models should be software-differentiable. The trends and tools for Al/ML make this easier to achieve.
Conventional primitive equation models rely on emergent properties from a “bottom-up” design. AI/ML approaches have
much more flexibility and control over the scales of motion, can separate them, allow or disallow interactions between
them, constrain them differently and give them different levels of importance/priority.

The basic concept of producing and evolving error estimates for observations, model, and dynamics is largely
absent from Al/ML approaches right now - this is one of the biggest opportunities for DA to inform Al/ML development.

Data Assimilation

Low-cost surrogate models provide the opportunity for new DA methods that were previously infeasible, e.g. large
ensembles, high resolutions, non-Gaussian/nonlinear analysis methods, complex applications where conventional
modeling is less mature

Optimization framework for Al/ML methods may be able to be leveraged to create new algorithmic approaches for DA

Community

Growing the visibility of data assimilation outside of weather forecasting community
DA community helping to shape the development of new ideas for more general applications in Al/ML
Merging of communities is inevitable - many different types of expertise are needed to solve these problems
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DataAssimBench: Google-funded development of a benchmarking
repo for integrating Al/ML with Data Assimilation (with Jax support)

Where are the benchmark training sets?
This is a stepping stone toward the use of more realistic models, real real-

We generate them from known dynamical systems, there is no standard set, world observational data

only standard source models B ae 9
M ’é‘é“ | SPEEDY - FV3-GFS FS COAMPS SR
198 =i

L63 Cl L63 e l C IedQG — o
N er] ()LJF) PQ(:)/\uﬁ\ l_’F:EB th(:)thfs

Y ¢V "" 4

Hycom NEMO Navgen

In [1]: from dabench.data import sqgturb )
import matplotlib.pyplot as plt In [1]: from dabench.data import aws
import matplotlib.pyplot as plt

In [2]: model obj = sqgturb.DataSQGturb() import numpy as np

model obj.generate(n steps = 1000)
gridded vals = model obj.to original dim() In [2]: data obj = aws.DataAWS(variables = ['air temperature at 2 metres'],

years = [2020, 2021],

min lat = 36.992426, max lat = 41.003444,
In [3]: |fig, ax = plt.subplots(l, 2) )mln_lon = -109.060253, max lon = -102.041524
e ot vt L T tertiery () SO et rigina
ax[e] .set title(" Tlmestep ~'9") gridded values = data obj.to original dim()
ax[0].set xlabel('x'); ax[@].set _ylabel('y") ;
ax[1].imshow(gridded vals[-1, 1]) In [3]: fig, ax = plt.subplots(1, 2)
ax[1l].set title('Timestep = 1000") fig.suptitle('Air Temp at 2 Metres (K), Colorado')
ContaCt ax[1].set xlabel('x'); ax[1].set_ylabel('y"') ax[0].imshow(gridded values[12], vmin=250, vmax=300)
. fig.tight layout() ax[0].set title(np.datetime as string(data obj.times[12], unit='h')); ax[0].set xl
t (ZZ? f fig.subplots adjust(top=1.2) ax[0].set yticks(ticks=[0, 5, 16, 15], labels=[37, 38.25, 39.5, 40.75]); ax[0].set
S eve[!enny sorarocean.com plt.show() ax[1].imshow(gridded values[3660], vmin=250, vmax=300)
= = — = ax[1].set title(np. datetlme as string(data obj.times[3660], unit='h"')); ax[1l].set
. - - ax[1].set yticks(ticks=[0, 5, 10, 15], labels=[37, 38.25, 39.5, 40.75]); ax[1].set
Steve Penny Kylen SOIVlk (CU) SQG Turbulence Model, Potential Vorticity (PVU) fig. tight layout ()
) ) Timestep = 0 Timestep = 1000 fig.subplots adjust(top=1.4)
Stephan Hoyer (Google), Sl
. . Air Temp at 2 Metres (K), Colorado
Tim Smith (CIRES/NOAA),
2020-01-01T12 2020-06-01T12
Tse-Chun Chen (CIRES/ 7 7
NOAA), Sarah Balkissoon g 82 g3825 ]
40.75 40.75 A
-109 -106.5 -104 -109 -106.5 -104
Longitude Longitude
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