

Efficient Representation Learning for Earth Observation & Remote Sensing

Linus Scheibenreif, Joëlle Hanna, Michael Mommert, Damian Borth

Current Research

Representation Learning of Deep Neural Networks

Remote Sensing & Earth Observation

Text-to-Speech Synthesis

Anomaly Detection in Transaction Data

ESA / NASA & St.Gallen Symposium 2022

Invited panel discussion with ESA General Secretary Josef Aschbacher, NASA Astronaut Edward Chang-Diaz and Space Law Expers Elyssia Gossler

Efficient Representation Learning

Deep Neural Networks & Remote Sensing

Last Year's ESA/ECMWF Machine Learning Workshop

Prof. Devis Tuia, EPFL

The low hanging fruit is a blessing... in disguise

- We can advance several applications with this technology from CS
- Massive increase of "DL-in-RS" papers
- Kind of DL-winter already.

Deep Neural Networks = Representation Learning

How can we be become more efficient in learning these representations?

sparsification

Overview

Shared-Backbones/Heads

Approach:

- Muilti-modal Fusion
- Multi-task Learning
- Auxiliary Tasks

Application

- NO2 estimation
- Power Production
- CO2 estimation

Self-supervised Learning

Approach:

- Contrastive Learning
- Augmentation free
- CNNs & Transformer

Application

- Land-use Classification
- Single-class / Multi-class
- Segmentation

Hyper-Representations

Approach:

- Contrastive Learning
- Model Zoos
- CNNs

Application

- Model analysis
- Sample unseen models
- Sparsificaiton

Shared Backbones / Heads

L Scheibenreif, M Mommert, D Borth Toward Global Estimation of Ground-Level NO 2 Pollution With Deep Learning and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing (TGSRS), March 2022

J Hanna, M Mommert, L Scheibenreif, D Borth Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2021

Overview

Shared-Backbones/Heads

Approach:

- Muilti-modal Fusion
- Multi-task Learning
- Auxiliary Tasks

Application

- NO2 estimation
- Power Production
- CO2 estimation

Self-supervised Learning

Approach:

- Contrastive Learning
- Augmentation free
- CNNs & Transformer

Application

- Land-use Classification
- Single-class / Multi-class
- Segmentation

Hyper-Representations

Approach:

- Contrastive Learning
- Model Zoos
- CNNs

Application

- Model analysis
- Sample unseen models
- Sparsificaiton

Ground Level NO₂ Pollution Estimation

L Scheibenreif, M Mommert, D Borth Toward Global Estimation of Ground-Level NO 2 Pollution With Deep Learning and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing (TGSRS), March 2022

Ground Level NO₂ Pollution Estimation

- With European Environment Agency Air Quality Stations
 - Surface NO₂ measurements
 - 3000 locations in Europe

Ground truth NO₂

Google Streetview, 2 Keizerinlaan Steenokkerzee, Belgium

• Cesa Sentinel-2

- Multi-spectral satellite imagery
- 10 m resolution
- Cesa Sentinel-5P
 - Tropospheric NO₂ column density
 - 7x3.5 km resolution

Approach

Fusion: Separate Backbones + Shared Regression Head

NN with dropout is mathematically equivalent to an approximation to the probabilistic deep Gaussian process

Y. Gal and Z. Ghahramani,

"Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning," in *International Conference on Machine Learning*. PMLR, 2016, pp. 1050–1059.

$$\mathbf{y}_i \sim N(f^{\theta}(\mathbf{x}_i), g^{\theta}(\mathbf{x}_i)^{-1})$$

$$L(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\mathbf{y} - f^{\theta}(\mathbf{x})) g^{\theta}(\mathbf{x}) (\mathbf{y} - f^{\theta}(\mathbf{x}))^{T} - \frac{1}{2} \log \det g^{\theta}(\mathbf{x}) + \frac{D}{2} \log 2\pi$$

US locations with high uncertainty

out-of-distribution data: CA

REGION T	'IME-SPAN	MODEL NAME	UNCFILTER	OBSERVATIONS	R2-SCORE	MAE	MSE	_
EUROPE 2	018-2020	SATELLITE	×	3087	0.65	5.18	48.01	
Europe 2	018-2020	MC DROPOUT	×	3087	0.60	5.52	50.85	
Europe 2	018-2020	MC DROPOUT	\checkmark	3061	0.66	4.99	45.25	
US 2	018-2020	SATELLITE	×	91	0.22	7.87	95.66	-
US 2	018-2020	MC DROPOUT	×	91	-2.44	11.39	422.29	
US 2	018-2020	MC DROPOUT	\checkmark	86	0.28	7.86	89.92	
US Q	UARTERLY	SATELLITE	×	273	0.37	8.44	104.77	-
US Q	UARTERLY	MC DROPOUT	×	273	-1.67	11.85	450.22	
US Q	UARTERLY	MC DROPOUT	\checkmark	258	0.42	8.26	98.85	
US M	IONTHLY	SATELLITE	×	637	0.46	8.26	105.25	-
US M	IONTHLY	MC DROPOUT	×	637	-1.23	11.73	434.25	
US M	IONTHLY	MC DROPOUT	\checkmark	602	0.48	8.23	102.38	-

in-distribution

Multitask Learning Power Plant Greenhouse Gas Emissions Estimation

Multitask Learning Power Plant Greenhouse Gas Emissions Estimation

• Idea:

Estimation of power generation (and CO₂) as prediction of:

- -rate of power generation,
- the type of fired fuel
- plume footprint
- Data
 - 📀 esa Sentinel-2
 - entsoo Power Plant Metadata

(type of fuel, hourly power generation rate, max installed capacity, ...)

– **CECMWF** Environmental Variables

(temperature at surface, relative humidity, wind norm and direction)

J Hanna, M Mommert, L Scheibenreif, D Borth Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2021

Approach

Multi-task Learning

Setup:

- shared backbone ٠
- multiple heads •
- dynamic task weighting ٠

(a) Low Humidity, High Temperature (b) High Humidity, Low Temperature

$$\begin{aligned} \mathcal{L}_{total} &= \sum_{t=1}^{T} \lambda_t l_t + \mu \|W\|_2 \\ &= \lambda_1 l_{seg} + \lambda_2 l_{reg} + \lambda_3 l_{cls} + \mu \|W\|_2 \\ \hline \bar{\kappa}_t^{(\tau)} &= \alpha \kappa_t^{(\tau)} + (1 - \alpha) \bar{\kappa}_t^{(\tau - 1)} \\ \lambda_t^{(\tau)} &= \mathrm{FL}(\bar{\kappa}_t^{(\tau)}, \gamma_t) \\ &= -(1 - \bar{\kappa}_t^{(\tau)})^{\gamma_t} \log(\bar{\kappa}_t^{(\tau)}) \\ \hline \\ \hline \\ \kappa_{\mathrm{cls}} &= \frac{1}{N} \sum_{i}^{N} \mathbb{1}_{\{y_i = \hat{y}_i\}} \\ \kappa_{\mathrm{seg}} &= \frac{1}{N} \sum_{i}^{N} \mathbb{1}_{\{\mathrm{IoU}(y_i, \hat{y}_i) \ge T\}} \\ \kappa_{\mathrm{reg}} &= \frac{1}{N} \sum_{i}^{N} \mathbb{1}_{\{\mathrm{MAE}(y_i, \hat{y}_i) \le T\}} \end{aligned}$$

Single-task vs. Multi-task for RGB & Multispectral Setups

		Task Weights (λ_i)			Segmentation	Regression $P^2(\mathcal{A})$ MAPE (\mathcal{A})			Classification
		Segmentation	Regression	Classification	100 (%)	MAE	K ² (%)	MAPE $(\%)$	Accuracy (%)
RGB	Single	1	0	0	55 ± 2	-	-	-	-
		0	1	0	-	218 ± 21	55 ± 5	60 ± 2	-
		0	0	1	-	-	-	-	87 ± 1
	Multi	0.33	0.33	0.33	57 ± 1	232 ± 17	48 ± 2	61 ± 3	88 ± 1
		0.15	0.7	0.15	53 ± 1	202 ± 6	62 ± 5	53 ± 2	89 ± 1
		Dy	namic Weighti	ng	57 ± 1	178 ± 5	70 ± 4	50 ± 5	88 ± 1

Single-task vs. Multi-task for RGB & Multispectral Setups

		Task Weights (λ_i)			Segmentation Regression			Classification	
		Segmentation	Regression	Classification	IoU (%)	MAE	${ m R}^2~(\%)$	MAPE (%)	Accuracy (%)
RGB	Single	1	0	0	55 ± 2	-	-	-	-
		0	1	0	-	218 ± 21	55 ± 5	60 ± 2	-
		0	0	1	-	-	-	-	87 ± 1
	Multi	0.33	0.33	0.33	57 ± 1	232 ± 17	48 ± 2	61 ± 3	88 ± 1
		0.15	0.7	0.15	53 ± 1	202 ± 6	62 ± 5	53 ± 2	89 ± 1
		Dynamic Weighting			57 ± 1	178 ± 5	70 ± 4	50 ± 5	88 ± 1
Multispectral	Single	1	0	0	59 ± 1	-	-	-	-
		0	1	0	-	202 ± 20	65 ± 5	60 ± 1	-
		0	0	1	-	-	-	-	90 ± 1
	Multi	0.33	0.33	0.33	61 ± 1	194 ± 9	63 ± 5	57 ± 5	92 ± 1
		0.15	0.7	0.15	62 ± 1	181 ± 6	69 ± 3	56 ± 1	94 ± 1
		Dy	namic Weighti	ng	64 ± 0	157 ± 4	78 ± 3	43 ± 5	93 ± 1

Results

Power Generation Estimation

CO2 Estimation

Self-supervised Learning

L Scheibenreif, M Mommert, D Borth **Contrastive Self-supervised Data Fusion for Satellite Imagery** Int. Society for Photogrammetry and Remote Sensing (ISPRS), 2022

L Scheibenreif, J Hanna, M Mommert, D Borth Self-supervised Vision Transformer for Land-cover Segmentation and Classification CVPR Earth Vision Workshop, 2022 - [Best Student Paper Award]

Overview

Shared-Backbones/Heads

Approach:

- Muilti-modal Fusion
- Multi-task Learning
- Auxiliary Tasks

Application

- NO2 estimation
- Power Production
- CO2 estimation

Self-supervised Learning

Approach:

- Contrastive Learning
- Augmentation free
- CNNs & Transformer

Application

- Land-use Classification
- Single-class / Multi-class
- Segmentation

Hyper-Representations

Approach:

- Contrastive Learning
- Model Zoos
- CNNs

Application

- Model analysis
- Sample unseen models
- Sparsificaiton

Self-supervised Learning

Self-supervised Learning

"Evolution" of SSL Approaches

Contrastive Learning

Contrastive Learning

Setup

Contrast is being defined in latent space i.e., the **embedding** vector of the image after a forward-pass through an (the same) **encoder** f_{θ} .

Since we have now vectors representing sample we have to quantify "attract" and "repel" and include this into a loss.

repel

1. Select encoder

Design Decisions:

- 2. Select similarity / distance (metric)
- 3. Define a proper loss function

Negatives:

"Hard negatives" are important to learn contrast, but might be drawn from the same class

anchor sample x^a

positive sample x^+

negative sample *x*⁻

Learning Objective

Historical

Precursor of this type of learning objective comes from two disciplines:

- Multiple Instance Learning
- Metric Learning

with ideas inspired by:

- Multidimensional scaling (MDS) [MDS; Cox et al. 1994]
- Locally linear embedding (LLE) [LLE; Roweis et al. 2000]

InfoNCE / NT-Xent loss

Given an anchor, one positive and N-1 negative samples $\{\mathbf{x}^{a}, \mathbf{x}^{+}, \mathbf{x}_{1}^{-}, \dots, \mathbf{x}_{N-1}^{-}\}$:

Loss functions

- Contrastive loss ٠ [Chopra et al. 2005]
- Triplet loss ٠ [Schroff et al. 2015; FaceNet]
- Lifted structured loss ٠ [Song et al. 2015]
- N-pair loss ٠ [Sohn 2016]
- InfoNCE loss ٠ [van den Oord, et al. 2018]
- NT-Xent loss ٠ [Chen et al., 2020]

Loss calculation is done within the mini batch i.e., batch size is a limiting factor for sample size as it related directly to the GPU or TPU memory!

Contrastive Self-supervised Data Fusion for Satellite Imagery

L Scheibenreif, M Mommert, D Borth Contrastive Self-supervised Data Fusion for Satellite Imagery Int. Society for Photogrammetry and Remote Sensing (ISPRS), 2022

Contrastive Self-supervised Data Fusion for Satellite Imagery

- Contrastive SSL yields great performance on natural images (e.g., SimCLR)
- Based on multiple views of same instance
- In natural images, multiple views are generated with **random augmentations**
- In remote sensing, unlabeled data is abundant, but less labeled data
- What could multiple views be in remote sensing and earth observation?

Contrastive SSL in Satellite Imagery

In satellite imagery, there are multiple views of the same location

Schmitt, M., Hughes, L. H., Qiu, C., & Zhu, X. X. SEN12MS--A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion. *arXiv preprint arXiv:1906.07789, 2019*

Approach: "Dual-SimCLR"

Approach: "Dual-SimCLR"

Approach: "Dual-SimCLR"

- SSL contrast on pairs of Sentinel-1/2 images for the same location
 - SEN12MS dataset
- Supervised training on different downstream tasks:
 - Single-label classification
 - Multi-label classification
 - DFC2020 dataset
 - EuroSAT

Experimental Setup

Single-label classification

Accuracy (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	OA
OnlySen-1	80 ± 15	57 ± 2	18 ± 17	0 ± 0	75 ± 10	67 ± 9	58 ± 2	97 ± 2	57 ± 3	62 ± 1
OnlySen-2	43 ± 26	78 ± 12	45 ± 29	11 ± 6	59 ± 9	62 ± 5	61 ± 18	96 ± 6	57 ± 6	62 ± 5
EarlyFusion	60 ± 12	66 ± 37	62 ± 8	1 ± 1	66 ± 10	73 ± 6	66 ± 18	99 ± 0	62 ± 4	66 ± 2
LateFusion	62 ± 23	76 ± 14	51 ± 18	1 ± 2	64 ± 11	71 ± 5	75 ± 9	100 ± 1	62 ± 4	65 ± 3

Single-label classification

Accuracy (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	OA
OnlySen-1 OnlySen-2 EarlyFusion LateFusion	$80 \pm 15 \\ 43 \pm 26 \\ 60 \pm 12 \\ 62 \pm 23$	$57 \pm 2 \\ 78 \pm 12 \\ 66 \pm 37 \\ 76 \pm 14$	$18 \pm 17 \\ 45 \pm 29 \\ 62 \pm 8 \\ 51 \pm 18$	$0 \pm 0 \\ 11 \pm 6 \\ 1 \pm 1 \\ 1 \pm 2$	$75 \pm 10 \\ 59 \pm 9 \\ 66 \pm 10 \\ 64 \pm 11$	$67 \pm 9 \\ 62 \pm 5 \\ 73 \pm 6 \\ 71 \pm 5$	$58 \pm 2 \\ 61 \pm 18 \\ 66 \pm 18 \\ 75 \pm 9$	$97 \pm 2 \\ 96 \pm 6 \\ 99 \pm 0 \\ 100 \pm 1$	$57 \pm 3 \\ 57 \pm 6 \\ 62 \pm 4 \\ 62 \pm 4$	$62 \pm 1 \\ 62 \pm 5 \\ 66 \pm 2 \\ 65 \pm 3$
SimCLR (RGB) D-SimCLR MMA	$11 \pm 12 \\ 78 \pm 11 \\ 68 \pm 17$	$69 \pm 13 \\ 84 \pm 6 \\ 89 \pm 5$	$45 \pm 14 \\ 62 \pm 10 \\ 53 \pm 13$	$3 \pm 3 \\ 10 \pm 6 \\ 8 \pm 9$	$66 \pm 22 \\ 63 \pm 3 \\ 71 \pm 7$	$26 \pm 23 \\ 84 \pm 4 \\ 80 \pm 6$	$77 \pm 14 \\ 82 \pm 7 \\ 81 \pm 7$	$99 \pm 1 \\ 99 \pm 0 \\ 100 \pm 0$	49 ± 3 70 \pm 2 69 ± 2	58 ± 4 70 \pm 1 69 ± 1

_

Single-label classification

Accuracy (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	OA
OnlySen-1 OnlySen-2 EarlyFusion LateFusion	$80 \pm 15 \\ 43 \pm 26 \\ 60 \pm 12 \\ 62 \pm 23$	$57 \pm 2 \\ 78 \pm 12 \\ 66 \pm 37 \\ 76 \pm 14$	$ \begin{array}{r} 18 \pm 17 \\ 45 \pm 29 \\ 62 \pm 8 \\ 51 \pm 18 \end{array} $	0 ± 0 11 ± 6 1 ± 1 1 ± 2	$75 \pm 10 \\ 59 \pm 9 \\ 66 \pm 10 \\ 64 \pm 11$	$67 \pm 9 \\ 62 \pm 5 \\ 73 \pm 6 \\ 71 \pm 5$	58 ± 2 61 ± 18 66 ± 18 75 ± 9	$97 \pm 2 \\ 96 \pm 6 \\ 99 \pm 0 \\ 100 \pm 1$	$57 \pm 3 \\ 57 \pm 6 \\ 62 \pm 4 \\ 62 \pm 4$	62 ± 1 62 ± 5 66 ± 2 65 ± 3
SimCLR (RGB) D-SimCLR MMA	$ \begin{array}{c} 11 \pm 12 \\ 78 \pm 11 \\ 68 \pm 17 \end{array} $	69 ± 13 84 ± 6 89 ± 5	45 ± 14 62 ± 10 53 ± 13	$\begin{array}{c} 3 \pm 3 \\ 10 \pm 6 \\ 8 \pm 9 \end{array}$	$\begin{array}{c} -66 \pm 22 \\ 63 \pm 3 \\ 71 \pm 7 \end{array}$	$ \begin{array}{c} - & - & - & - & - \\ 26 \pm 23 \\ 84 \pm 4 \\ 80 \pm 6 \end{array} $	77 ± 14 82 ± 7 81 ± 7	$ \begin{array}{c} - & - & - & - & - \\ 99 \pm 1 \\ 99 \pm 0 \\ 100 \pm 0 \end{array} $	$ \begin{array}{c} 49 \pm 3 \\ 70 \pm 2 \\ 69 \pm 2 \end{array} $	58 ± 4 70 ± 1 69 ± 1

Multi-label classification

F1 Score (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	O-F1
OnlySen-1	69 ± 2	46 ± 6	29 ± 5	8 ± 8	68 ± 7	81 ± 3	60 ± 8	96 ± 1	57 ± 2	62 ± 2
OnlySen-2	37 ± 20	51 ± 14	43 ± 20	23 ± 18	76 ± 2	79 ± 6	63 ± 10	94 ± 2	58 ± 3	63 ± 2
EarlyFusion	48 ± 10	53 ± 7	45 ± 13	13 ± 11	69 ± 5	84 ± 4	71 ± 4	94 ± 1	60 ± 3	62 ± 3
LateFusion	56 ± 6	45 ± 11	33 ± 9	18 ± 24	64 ± 3	69 ± 16	53 ± 15	96 ± 1	54 ± 7	61 ± 5

Single-label classification

Accuracy (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	OA
OnlySen-1 OnlySen-2 EarlyFusion LateFusion	$80 \pm 15 \\ 43 \pm 26 \\ 60 \pm 12 \\ 62 \pm 23$	$57 \pm 2 \\ 78 \pm 12 \\ 66 \pm 37 \\ 76 \pm 14$	$\begin{array}{c} 18 \pm 17 \\ 45 \pm 29 \\ 62 \pm 8 \\ 51 \pm 18 \end{array}$	0 ± 0 11 ± 6 1 ± 1 1 ± 2	$75 \pm 10 \\ 59 \pm 9 \\ 66 \pm 10 \\ 64 \pm 11$	$67 \pm 9 \\ 62 \pm 5 \\ 73 \pm 6 \\ 71 \pm 5$	58 ± 2 61 ± 18 66 ± 18 75 ± 9	$97 \pm 2 \\ 96 \pm 6 \\ 99 \pm 0 \\ 100 \pm 1$	$57 \pm 3 \\ 57 \pm 6 \\ 62 \pm 4 \\ 62 \pm 4$	$62 \pm 1 \\ 62 \pm 5 \\ 66 \pm 2 \\ 65 \pm 3$
SimCLR (RGB) D-SimCLR MMA	$ \begin{array}{c} 11 \pm 12 \\ 78 \pm 11 \\ 68 \pm 17 \end{array} $	69 ± 13 84 ± 6 89 ± 5	$\begin{array}{c} -45 \pm 14 \\ 62 \pm 10 \\ 53 \pm 13 \end{array}$	$\begin{array}{c} 3 \pm 3 \\ 10 \pm 6 \\ 8 \pm 9 \end{array}$		$ \begin{array}{r} -26 \pm 23 \\ 84 \pm 4 \\ 80 \pm 6 \end{array} $	77 ± 14 82 ± 7 81 ± 7	99 ± 1 99 ± 0 100 ± 0	$ \begin{array}{c} - 49 \pm 3 \\ 70 \pm 2 \\ 69 \pm 2 \end{array} $	58 ± 4 70 ± 1 69 ± 1

Multi-label classification

F1 Score (%)	Forest	Shrubland	Grassl.	Wetl.	Cropl.	Urban	Barren	Water	Average	O-F1
OnlySen-1 OnlySen-2 EarlyFusion LateFusion	$69 \pm 2 \\ 37 \pm 20 \\ 48 \pm 10 \\ 56 \pm 6$	$46 \pm 6 \\ 51 \pm 14 \\ 53 \pm 7 \\ 45 \pm 11$	$29 \pm 5 \\ 43 \pm 20 \\ 45 \pm 13 \\ 33 \pm 9$	8 ± 8 23 ± 18 13 ± 11 18 ± 24	$68 \pm 7 \\ 76 \pm 2 \\ 69 \pm 5 \\ 64 \pm 3$	$81 \pm 3 \\ 79 \pm 6 \\ 84 \pm 4 \\ 69 \pm 16$	$60 \pm 8 \\ 63 \pm 10 \\ 71 \pm 4 \\ 53 \pm 15$	$96 \pm 1 \\ 94 \pm 2 \\ 94 \pm 1 \\ 96 \pm 1$	$57 \pm 2 \\ 58 \pm 3 \\ 60 \pm 3 \\ 54 \pm 7$	$62 \pm 2 \\ 63 \pm 2 \\ 62 \pm 3 \\ 61 \pm 5$
SimCLR (RGB) D-SimCLR MMA	$3 \pm 4 \\ 62 \pm 2 \\ 58 \pm 5$	$49 \pm 11 \\ 61 \pm 3 \\ 57 \pm 5$	$24 \pm 16 \\ 53 \pm 7 \\ 35 \pm 8$	$10 \pm 8 \\ 31 \pm 2 \\ 10 \pm 6$	$63 \pm 24 \\ 72 \pm 3 \\ 77 \pm 3$	$40 \pm 36 \\ 87 \pm 0 \\ 89 \pm 1$	$49 \pm 15 \\ 77 \pm 1 \\ 73 \pm 5$	$73 \pm 6 \\ 96 \pm 1 \\ 97 \pm 0$	$39 \pm 10 \\ {f 67 \pm 1} \\ 62 \pm 2$	49 ± 6 69 \pm 1 66 ± 1

fine-tuning to DFC2020 dataset

Ablation on labeled dataset size

fine-tuning to DFC2020 dataset

Self-supervised Vision Transformer for Land-cover Segmentation and Classification

L Scheibenreif, J Hanna, M Mommert, D Borth Self-supervised Vision Transformer for Land-cover Segmentation and Classification CVPR Earth Vision Workshop, 2022

Self-supervised Vision Transformer for Land-cover Segmentation and Classification

- Transformer models are state-of-the-art in NLP [Otter 2020]
- show great potential in Computer Vision [Dosovitskiy 2020]
- struggle on small datasets
- Self-supervised learning (SSL) contributes to success of Transformers in NLP

We adapt contrastive SSL to remote sensing data for pre-training of <u>Vision Transformers</u> and extend downstream tasks to <u>segmentation</u>

- Self-supervised pre-training of large encoders
- Finetuning of small heads for downstream tasks
- SSL Related Work:

Acquire multiple views as co-located measurements [Manas 2021], [Saha 2021], [Chen, 2021]

Data & Setup

Self-supervised pre-training

- Co-located Sentinel-1/2 image pairs
- SEN12MS dataset [Schmitt 2019]
- Low-resolution land cover labels are ignored

Land-cover classification downstream tasks

- Dataset from Data Fusion Contest (DFC2020) [Yokoya 2020]
- **Task 1:** Single- and multilabel classification
- Task 2: Segmentation

Self-supervised Pre-training

- 1. Encode Sentinel-1/2 images with distinct encoders
- 2. Compute contrastive loss on projected representations

$$\mathcal{L}_{i,j} = -\log \frac{\exp(\sin(\mathcal{R}_i, \mathcal{R}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\mathcal{R}_i, \mathcal{R}_k)/\tau)}$$

Classification

- 1. Encode Sentinel-1/2 images with distinct encoders
- 2. Compute contrastive loss on projected representations
- 3. Replace projection head by downstream task specific head

$$\mathcal{L}_{i,j} = -\log \frac{\exp(\sin(\mathcal{R}_i, \mathcal{R}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\mathcal{R}_i, \mathcal{R}_k)/\tau)}$$

Segmentation

- 1. Encode Sentinel-1/2 images with distinct encoders
- 2. Compute contrastive loss on projected representations
- 3. Replace projection head by downstream task specific module

$$\mathcal{L}_{i,j} = -\log \frac{\exp(\sin(\mathcal{R}_i, \mathcal{R}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\mathcal{R}_i, \mathcal{R}_k)/\tau)}$$

Segmentation

Classification

SSL pre-training and 10-20% of labeled data outperform fully supervised training

Hyper-Representation Learning

K Schürholt, D Kostadinov, D Borth Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction Neural Information Processing Systems (NeurIPS), 2021

K Schürholt, B Knyazev, X Giró-i-Nieto, D Borth Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights Neural Information Processing Systems (NeurIPS), 2022

K Schürholt, D Taskiran, B Knyazev, X Giró-i-Nieto, D Borth **Model Zoos: A Dataset of Diverse Populations of Neural Network Models** Neural Information Processing Systems (NeurIPS), 2022 [Google Research Scholar Award 2022]

Overview

Shared-Backbones/Heads

Approach:

- Muilti-modal Fusion
- Multi-task Learning
- Auxiliary Tasks

Application

- NO2 estimation
- Power Production
- CO2 estimation

Self-supervised Learning

Approach:

- Contrastive Learning
- Augmentation free
- CNNs & Transformer

Application

- Land-use Classification
- Single-class / Multi-class
- Segmentation

Hyper-Representations

Approach:

- Contrastive Learning
- Model Zoos
- CNNs

Application

- Model analysis
- Sample unseen models
- Sparsificaiton

Neural Network Training

Neural Networks are successfully applied on multiple domains

Loss surface and optimization problem of Neural Networks are non-convex

Goodfellow, Vinyals, Saxe; ICLR 2015; *Qualitatively characterizing neural network optimization problems* Dauphin et al.; NeurIPS 2014; *Identifying and attacking the saddle point problem in high-dimensional non-convex optimization* LeCun, Bengion, Hinton; Nature 2015; *Deep Learning*

Neural Network training optimization is high dimensional

Brown et al.; 2020; *Language Models are Few-Shot Learners* Larsen et al.; ICML 2021; *How many degrees of freedom do we need to train deep networks: a loss landscape perspective*

Li et al.; NeurIPS 2018; Visualizing the Loss Landscape of Neural Nets

Neural Network training is sensitive to hyperparameters and random initialization

Hanin, Rolnick; NeurIPS 2018; How to Start Training: The Effect of Initialization and Architecture

We want to better understand the relation between properties of NN models and their solution in weight space

Investigating Populations of NN Models

Dataset

Investigating Populations of NN Models

Hypothesis:

- 1. Neural Networks populate a structure in weight space
- 2. That structure contains information on properties and
 - generating factors of the models

Architecture

- Optimizer
- Activation
- Initialization Method
- Learning Rate
- L2-Regularization

Dataset

Architecture

Optimizer

Learning Rate

L2-Regularization

Activation

•

•

Investigating Populations of NN Models

Hypothesis:

- Neural Networks populate a structure in weight space 1.
- 2. That structure contains information on properties and
 - generating factors of the models

Goal: Learn meaningful representations of populations of Neural Network models

Investigating Populations of NN Models

Approach

Datasets:

 MNIST, F-MNIST, SVHN, USPS, STL, CIFAR10, CIFAR100, Tiny ImageNet, EuroSAT

Architectures

- **CNN:** 2464 paramters (ours)
- CNN: 4970 paramters (Unterthiner et al., 2020)
- **ResNet-18:** 11 million parameters (He, 2015)

Hyperparamters

- Seed, activation, initialization method, learning rate, regularization, ...
- More than 50k neural networks
- 2.6 million model states
- Sparsified Model Twins

all models are open source: www.modelzoos.cc

Our Zoos	Data	Architecture	Samples
Tetris-Seed	Tetris	MLP (100 params.)	75k
Tetris-Hyp	Tetris	MLP (100 params.)	217.5k
MNIST-Seed	MNIST	CNN (2464 params.)	50k
F-MNIST-Seed	F-MNIST	CNN (2464 params.)	50k
MNIST-Hyp-1-Fix-Seed	MNIST	CNN (2464 params.)	~57.6k
MNIST-Hyp-1-Rand-Seed	MNIST	CNN (2464 params.)	~57.6k
MNIST-Hyp-5-Fix-Seed	MNIST	CNN (2464 params.)	~64k
MNIST-Hyp-5-Rand-Seed	MNIST	CNN (2464 params.)	~64k

Zoos from Unterthiner et al., 2020	Data	Architecture	Samples
MNIST-Hyp	MNIST	CNN (4970 params.)	270k
F-MNIST-Hyp	F-MNIST	CNN (4970 params.)	270k
CIFAR-Hyp	CIFAR10	CNN (4970 params.)	270k
SVHN-Hyp	SVHN	CNN (4970 params.)	270k

Model Zoos

NN Weights Augmentations

Augmentations:

- increase number of training samples
- Encode inductive bias

Erasing & Noise:

• Adaptations from computer vision

Permutation Augmentation:

- Leverages symmetries in weight space
- Proof: equivalence holds forward & backward
- Scales with faculty of # neurons/kernels
- Fully-connected and convolutional layers
- Full Details are in the appendix of our paper

Assumptions

$$(\mathbf{P}^l)^{\mathrm{T}}\mathbf{P}^l = \mathbf{I}, \qquad \mathbf{P}^l\sigma(\mathbf{n}^l) = \sigma(\mathbf{P}^l\mathbf{n}^l),$$

Forward pass

$$\mathbf{n}^{l+1} = \mathbf{W}^{l+1} \mathbf{I} \sigma(\mathbf{W}^{l} \mathbf{a}^{l-1} + \mathbf{b}^{l}) + \mathbf{b}^{l+1}$$

= $\mathbf{W}^{l+1} (\mathbf{P}^{l})^{\mathrm{T}} \mathbf{P}^{l} \sigma(\mathbf{W}^{l} \mathbf{a}^{l-1} + \mathbf{b}^{l}) + \mathbf{b}^{l+1}$
= $\mathbf{W}^{l+1} (\mathbf{P}^{l})^{\mathrm{T}} \sigma(\mathbf{P}^{l} \mathbf{W}^{l} \mathbf{a}^{l-1} + \mathbf{P}^{l} \mathbf{b}^{l}) + \mathbf{b}^{l+1}$
= $\mathbf{\hat{W}}^{l+1} \sigma(\mathbf{\hat{W}}^{l} \mathbf{a}^{l-1} + \mathbf{\hat{b}}^{l}) + \mathbf{b}^{l+1}$,

Backward pass

$$\begin{split} (\mathbf{P}^{l}\mathbf{W}^{l})_{\text{new}} = & \mathbf{P}^{l}\mathbf{W}^{l} - \alpha \mathbf{P}^{l}\nabla_{\mathbf{W}^{l}}\mathcal{L} \\ = & \mathbf{P}^{l}\mathbf{W}^{l} - \alpha \mathbf{P}^{l}\delta^{l}(\mathbf{a}^{l-1})^{\text{T}} \\ = & \mathbf{P}^{l}\mathbf{W}^{l} - \alpha \mathbf{P}^{l}\left[(\mathbf{W}^{l+1})^{\text{T}}\delta^{l+1} \odot \sigma'(\mathbf{n}^{l})\right] (\mathbf{a}^{l-1})^{\text{T}} \\ = & \mathbf{P}^{l}\mathbf{W}^{l} - \alpha\left[(\mathbf{W}^{l+1}\mathbf{P}^{\text{T}})^{\text{T}}\delta^{l+1} \odot \sigma'(\mathbf{P}^{l}\mathbf{n}^{l})\right] (\mathbf{a}^{l-1})^{\text{T}} \\ = & \mathbf{P}^{l}\mathbf{W}^{l} - \alpha\left[(\mathbf{W}^{l+1}(\mathbf{P}^{l})^{\text{T}})^{\text{T}}\delta^{l+1} \odot \sigma'(\mathbf{P}^{l}\mathbf{W}^{l}\mathbf{a}^{l-1} + \mathbf{P}^{l}\mathbf{b}^{l})\right](\mathbf{a}^{l-1})^{\text{T}} \\ & (\hat{\mathbf{W}}^{l})_{\text{new}} = \hat{\mathbf{W}}^{l} - \alpha\left[(\hat{\mathbf{W}}^{l+1})^{\text{T}}\delta^{l+1} \odot \sigma'(\hat{\mathbf{W}}^{l}\mathbf{a}^{l-1} + \hat{\mathbf{b}}^{l})\right] (\mathbf{a}^{l-1})^{\text{T}} \Box \end{split}$$

Autoencoding Transformer

Experiment Results

airplane automobile automobile bird cat deer dog bird cat deer dog bird cat	
---	--

	MNIST-HYP		FASHION-HYP		CIFAR10-HYP			SVHN-HYP				
	W	S(W)	$E_c D$	W	S(W)	$E_c D$	W	S(W)	$E_c D$	W	S(W)	$E_c D$
Ерн	25.8	33.2 81.5	50.0 94.9	26.6	34.6 78.5	51.3 96.2	25.7	30.3 82.9	53.3 92.7	22.8	37.8 82.1	52.6 91.1
	,	01.5	,	1 /0.2	10.5	20.2	1 /0.1	02.7		00.5	02.1	

the higher -> the better R^2 for regression downstream tasks

Embedding Homogeneity

Embedding Homogeneity

EuroSAT Model Zoo & Sparsified Twins

EuroSAT - Dataset

Patch-based

Classification

EuroSAT Model Zoo & Sparsified Twins

Sparsity Ratio

Test Accuracy

Overview

Shared-Backbones/Heads

Approach:

- Muilti-modal Fusion
- Multi-task Learning
- Auxiliary Tasks

Application

- NO2 estimation
- Power Production
- CO2 estimation

Self-supervised Learning

Approach:

- Contrastive Learning
- Augmentation free
- CNNs & Transformer

Application

- Land-use Classification
- Single-class / Multi-class
- Segmentation

Hyper-Representations

Approach:

- Contrastive Learning
- Model Zoos
- CNNs

Application

- Model analysis
- Sample unseen models
- Sparsificaiton

Questions?