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ESA / NASA & St.Gallen Symposium 2022

3Prof. Damian Borth - Artificial Intelligence & Machine Learning [AIML]

Invited panel discussion with ESA General Secretary Josef Aschbacher, NASA Astronaut Edward Chang-Diaz and Space Law Expers Elyssia Gossler



Efficient Representation Learning
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Deep Neural Networks & Remote Sensing
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Last Year’s ESA/ECMWF Machine Learning Workshop 

Prof. Devis Tuia, EPFL



encoder !

Input

head

Deep Neural Networks = Representation Learning

Discriminative Tasks Generative Tasks

6Prof. Damian Borth - Artificial Intelligence & Machine Learning [AI:ML]

! "# decoderencoder !

Input! "#

Output M
ap

classification, … segmentation, …

How can we be become more efficient in learning these representations?
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Self-supervised Learning

Approach:

• Contrastive Learning

• Augmentation free

• CNNs & Transformer

Application

• Land-use Classification

• Single-class / Multi-class 

• Segmentation

Hyper-Representations

Approach:

• Contrastive Learning

• Model Zoos

• CNNs

Application

• Model analysis

• Sample unseen models

• Sparsificaiton

Shared-Backbones/Heads

Approach:

• Muilti-modal Fusion

• Multi-task Learning

• Auxiliary Tasks

Application

• NO2 estimation

• Power Production

• CO2 estimation



Shared Backbones / Heads
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L Scheibenreif, M Mommert, D Borth
Toward Global Estimation of Ground-Level NO 2 Pollution With Deep Learning and Remote Sensing,

IEEE Transactions on Geoscience and Remote Sensing (TGSRS), March 2022

J Hanna, M Mommert, L Scheibenreif, D Borth
Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery,
NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2021
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Ground Level NO2 Pollution Estimation
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L Scheibenreif, M Mommert, D Borth

Toward Global Estimation of Ground-Level NO 2 Pollution With Deep Learning and Remote Sensing,

IEEE Transactions on Geoscience and Remote Sensing (TGSRS), March 2022



Ground Level NO2 Pollution Estimation

• EEA Air Quality Stations
–Surface NO2 measurements
–3000 locations in Europe

• Sentinel-2
–Multi-spectral satellite imagery
–10 m resolution

• Sentinel-5P
–Tropospheric NO2 column density
–7x3.5 km resolution

20

L Scheibenreif, M Mommert, D Borth

Toward Global Estimation of Ground-Level NO 2 Pollution With Deep Learning and Remote Sensing,

IEEE Transactions on Geoscience and Remote Sensing (TGSRS), March 2022



Approach
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Y. Gal and Z. Ghahramani, 

“Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,” 

in International Conference on Machine Learning. PMLR, 2016, pp. 1050–1059. 

NN with dropout is mathematically 

equivalent to an approximation to the 

probabilistic deep Gaussian process

Fusion: Separate Backbones + Shared Regression Head



Results
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in-distribution

US locations with high uncertainty out-of-distribution data: CA



Multitask Learning Power Plant 
Greenhouse Gas Emissions Estimation
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J Hanna, M Mommert, L Scheibenreif, D Borth

Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery,

NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2021



Multitask Learning Power Plant 
Greenhouse Gas Emissions Estimation
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• Idea:
Estimation of power generation (and CO2) as prediction of: 
– rate of power generation, 
– the type of fired fuel
–plume footprint

• Data
– Sentinel-2
– Power Plant Metadata  

(type of fuel, hourly power generation rate, max installed capacity, …)

– Environmental Variables
(temperature at surface, relative humidity, wind norm and direction) J Hanna, M Mommert, L Scheibenreif, D Borth

Multitask Learning for Estimating Power Plant Greenhouse Gas Emissions from Satellite Imagery,

NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2021



Approach
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Multi-task Learning

Setup:

• shared backbone
• multiple heads
• dynamic task weighting

(a) Low Humidity, High Temperature (b) High Humidity, Low Temperature

Temperature: 5 ℃ Humidity: 87%Temperature: 31 ℃ Humidity: 39%



Results
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Single-task vs. Multi-task for RGB & Multispectral Setups



Results
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Single-task vs. Multi-task for RGB & Multispectral Setups



Results
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Power Generation Estimation CO2 Estimation



Self-supervised Learning
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L Scheibenreif, M Mommert, D Borth
Contrastive Self-supervised Data Fusion for Satellite Imagery

Int. Society for Photogrammetry and Remote Sensing (ISPRS), 2022

L Scheibenreif, J Hanna, M Mommert, D Borth
Self-supervised Vision Transformer for Land-cover Segmentation and Classification

CVPR Earth Vision Workshop, 2022 - [Best Student Paper Award]
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evaluate on the downstream 

task e.g. classification, 

regression, detection, …

Self-supervised Learning

31

Setup

Self-supervised 

Learning
"!

Supervised 

Learning

(fine-tuning)

Large amounts of 
unlabeled data

Attach a shallow network on the feature encoder; 
train the shallow network on the downstream task 
with small amount of labeled data

feature encoderLearn a good feature representation 
from self-supervised pretext tasks, 

i.e., labels are generated automatically

pretext task downstream task



evaluate on the downstream 

task e.g. classification, 

regression, detection, …

Self-supervised Learning

Goal

32

SSL aims to learn rich task-agnostic representations  from raw 

unlabeled data suitable for many different downstream tasks

We want to be able to train 
equally good models without 

too many labels

Setup

Self-supervised 

Learning
"!

Supervised 

Learning

(fine-tuning)

Large amounts of 
unlabeled data

Attach a shallow network on the feature encoder; 
train the shallow network on the downstream task 
with small amount of labeled data

feature encoder

Evaluation

We potentially might be able to
generalize better because we 

have to learn more about the world

Evaluation of SSL (usually) focuses on the downstream

task and not so much on the self-supervised learning task

We don’t care so 
much about the 

pretext task 
performance

We want rich (disentangled) 
representations -> evaluation 

on downstream task fine-
tuning a linear model with labels

We want to know about 
generalizability  of our rep-

representation -> fine-tuning with 
non-linear model with labels

Learn a good feature representation 
from self-supervised pretext tasks, 

i.e., labels are generated automatically

pretext task downstream task



“Evolution” of SSL Approaches
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Source: https://paperswithcode.com/sota/self-supervised-image-classification-on

ImageNet Linear Benchmark

2022

?

Top-1 Accuracy

Non-Contrastive

Contrastive

2019

71.5%

2018

54.0%

36.5%

2017

35.4%

2016

34.0%

2015

30.2%

2020

76.5%
79.8%

2021

81.0%
81.3%

Instance 
Discrimination

CPC v2
SimCLR

SimCLR v2
BYOL

MoCo v3
(ViT-BN)

EsViT
(Swin-B)

CMC: 70.6%
MoCo: 68.6%

AMDIM: 68.1%

SwAV: 78.5%
InfoMin: 73.0%

MoCo v2: 71.1 %
SimSiam: 71.3%

CPC: 48.7% DINO: 80.1%
MAE: 76.1%

Barlow Twins: 73.2%
VicReg: 73.2 %

Supervised
(ResNet-50)



Contrastive Learning
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encoder "& !(

encoder "& !)

encoder "& !*

anchor sample ##

positive sample $$

negative sample $%

attract

repel



Contrastive Learning
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Setup

Negatives: 

“Hard negatives” are important to 
learn contrast, but might be drawn 

from the same class 

Contrast is being defined in latent space 

i.e., the embedding vector of the image 

after a forward-pass through an 

(the same) encoder "! .

Since we have now vectors representing

sample we have to quantify “attract” 

and “repel” and include this into a loss.

Design Decisions:

1. Select encoder

2. Select similarity / distance (metric)

3. Define a proper loss function

encoder "& !(

encoder "& !)

encoder "& !*

anchor sample ##

positive sample $$

negative sample $%

attract

repel



Learning Objective
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Loss functions
• Contrastive loss 

[Chopra et al. 2005] 

• Triplet loss 
[Schroff et al. 2015; FaceNet] 

• Lifted structured loss 
[Song et al. 2015] 

• N-pair loss 
[Sohn 2016] 

• InfoNCE loss
[van den Oord, et al. 2018] 

• NT-Xent loss
[Chen et al., 2020]

Historical
Precursor of this type of learning 
objective comes from two disciplines:

- Multiple Instance Learning

- Metric Learning

with ideas inspired by:

- Multidimensional scaling (MDS)
[MDS; Cox et al. 1994]

- Locally linear embedding (LLE)
[LLE; Roweis et al. 2000]

Loss calculation is done within the mini batch

i.e., batch size is a limiting factor for sample size 

as it related directly to the GPU or TPU memory!

InfoNCE / NT-Xent loss
Given an anchor, one positive and N-1 negative samples {&&, &$, &'%, … , &(%'% }:

repel

attract

temperature term
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Contrastive Self-supervised Data Fusion 
for Satellite Imagery

L Scheibenreif, M Mommert, D Borth

Contrastive Self-supervised Data Fusion for Satellite Imagery

Int. Society for Photogrammetry and Remote Sensing (ISPRS), 2022



Contrastive Self-supervised Data Fusion 
for Satellite Imagery

• Contrastive SSL yields great performance 
on natural images (e.g., SimCLR)

• Based on multiple views of same instance

• In natural images, multiple views are 
generated with random augmentations

• In remote sensing, unlabeled data is 
abundant, but less labeled data

• What could multiple views be in 
remote sensing and earth observation?

38

L Scheibenreif, M Mommert, D Borth

Contrastive Self-supervised Data Fusion for Satellite Imagery

Int. Society for Photogrammetry and Remote Sensing (ISPRS), 2022



Contrastive SSL in Satellite Imagery

In satellite imagery, there are multiple views of the same location

39

Schmitt, M., Hughes, L. H., Qiu, C., & Zhu, X. X.
SEN12MS--A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion.

arXiv preprint arXiv:1906.07789, 2019



Approach: “Dual-SimCLR”
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Approach: “Dual-SimCLR”
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Approach: “Dual-SimCLR”

42

• SSL contrast on pairs of Sentinel-1/2 
images for the same location
– SEN12MS dataset

• Supervised training on different 
downstream tasks:
– Single-label classification
– Multi-label classification
– DFC2020 dataset
– EuroSAT



Experimental Setup

43
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Results
Single-label classification

fine-tuning to DFC2020 dataset
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Results
Single-label classification

fine-tuning to DFC2020 dataset
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Results
Single-label classification

Multi-label classification

fine-tuning to DFC2020 dataset
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Results
Single-label classification

Multi-label classification

fine-tuning to DFC2020 dataset



Results
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Ablation on labeled dataset size

fine-tuning to DFC2020 dataset
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Self-supervised Vision Transformer 
for Land-cover Segmentation and Classification

L Scheibenreif, J Hanna, M Mommert, D Borth

Self-supervised Vision Transformer for Land-cover Segmentation and Classification

CVPR Earth Vision Workshop, 2022



Self-supervised Vision Transformer 
for Land-cover Segmentation and Classification

• Transformer models are state-of-the-art in NLP [Otter 2020]

• show great potential in Computer Vision [Dosovitskiy 2020]

• struggle on small datasets

• Self-supervised learning (SSL) contributes to success of Transformers in NLP

– Self-supervised pre-training of large encoders
– Finetuning of small heads for downstream tasks

• SSL Related Work: 
Acquire multiple views as co-located measurements
[Manas 2021], [Saha 2021], [Chen, 2021]

50

We adapt contrastive SSL to remote sensing 
data for pre-training of Vision Transformers

and extend downstream tasks to segmentation

L Scheibenreif, J Hanna, M Mommert, D Borth

Self-supervised Vision Transformer for Land-cover Segmentation and Classification

CVPR Earth Vision Workshop, 2022



Data & Setup

Self-supervised pre-training
• Co-located Sentinel-1/2 image pairs
• SEN12MS dataset [Schmitt 2019]

• Low-resolution land cover labels are ignored

Land-cover classification downstream tasks
• Dataset from Data Fusion Contest (DFC2020) 

[Yokoya 2020]

• Task 1: Single- and multilabel classification
• Task 2: Segmentation

51



Self-supervised Pre-training

52

Swin Transformer: [Liu 2021]

1. Encode Sentinel-1/2 images with distinct encoders
2. Compute contrastive loss on projected representations



Classification

1. Encode Sentinel-1/2 images with distinct encoders
2. Compute contrastive loss on projected representations
3. Replace projection head by downstream task specific head

53

Swin Transformer: [Liu 2021]

Classification Head



Segmentation

1. Encode Sentinel-1/2 images with distinct encoders
2. Compute contrastive loss on projected representations
3. Replace projection head by downstream task specific module

54

Swin Transformer: [Liu 2021]

Segmentation Decoder



Results
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Results
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SSL pre-training and 10-20% of labeled data outperform fully supervised training

Classification Segmentation



Hyper-Representation Learning
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K Schürholt, D Kostadinov, D Borth
Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction

Neural Information Processing Systems (NeurIPS), 2021

K Schürholt, B Knyazev, X Giró-i-Nieto, D Borth
Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights

Neural Information Processing Systems (NeurIPS), 2022

K Schürholt, D Taskiran, B Knyazev, X Giró-i-Nieto, D Borth
Model Zoos: A Dataset of Diverse Populations of Neural Network Models

Neural Information Processing Systems (NeurIPS), 2022
[Google Research Scholar Award 2022]
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Self-supervised Learning

Approach:

• Contrastive Learning

• Augmentation free

• CNNs & Transformer

Application

• Land-use Classification

• Single-class / Multi-class 

• Segmentation

Hyper-Representations

Approach:

• Contrastive Learning

• Model Zoos

• CNNs

Application

• Model analysis

• Sample unseen models

• Sparsificaiton

Shared-Backbones/Heads

Approach:

• Muilti-modal Fusion

• Multi-task Learning

• Auxiliary Tasks

Application

• NO2 estimation

• Power Production

• CO2 estimation
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Neural Network Training

Neural Networks are successfully applied on multiple domains

Loss surface and optimization problem of Neural Networks are non-convex 

Goodfellow, Vinyals, Saxe; ICLR 2015; Qualitatively characterizing neural network optimization problems

Dauphin et al.; NeurIPS 2014; Identifying and attacking the saddle point problem in high-dimensional non-convex optimization

LeCun, Bengion, Hinton; Nature 2015; Deep Learning

Neural Network training optimization is high dimensional
Brown et al.; 2020; Language Models are Few-Shot Learners 

Larsen et al.; ICML 2021; How many degrees of freedom do we need to train deep networks: a loss landscape perspective

Neural Network training is sensitive to hyperparameters and random initialization

Hanin, Rolnick; NeurIPS 2018; How to Start Training: The Effect of Initialization and Architecture

Li et al.; NeurIPS 2018; Visualizing the Loss
Landscape of Neural Nets

We want to better understand the relation 
between properties of NN models and their solution in weight space
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Investigating Populations of NN Models
Dataset

Architecture

Hyperparamerters

• Optimizer
• Activation
• Initialization Method
• Learning Rate
• L2-Regularization

Model
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Investigating Populations of NN Models
Dataset

Architecture

Hyperparamerters

• Optimizer
• Activation
• Initialization Method
• Learning Rate
• L2-Regularization

Model Population

Hypothesis:

1. Neural Networks populate a structure in weight space
2. That structure contains information on properties and 

generating factors of the models
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Investigating Populations of NN Models
Dataset

Architecture

Hyperparamerters

• Optimizer
• Activation
• Initialization Method
• Learning Rate
• L2-Regularization

Model Population

Hypothesis:

1. Neural Networks populate a structure in weight space
2. That structure contains information on properties and 

generating factors of the models

Representation Space

Goal: Learn meaningful representations of 
populations of Neural Network models
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Investigating Populations of NN Models
Dataset

Architecture

Hyperparamerters

• Optimizer
• Activation
• Initialization Method
• Learning Rate
• L2-Regularization

Model Population

Hypothesis:

1. Neural Networks populate a structure in weight space
2. That structure contains information on properties and 

generating factors of the models

Representation Space

Goal: Learn meaningful representations of 
populations of Neural Network models

Model Analysis

versioning, diagnostics, …

Learning Dynamics

early-stopping, model selection, …

Model Generation

initialization, 

transfer-learning, meta-learning, …



Approach
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(I) Model Zoos

data set: @

hyper
parameters: λ

architecture: B
{w1,…wn}

(II) Hyper-Representation Learning

hyper-.representation

ℎ"

$%%

&!

encoder decoder

'#

(III) Down-stream Tasks

Model Analysis

Versioning, Diagnostics
Accuracy, Model Properties

Learning Dynamics

Early-stopping
Model Selection

Model Generation

Initialization, Ensembles
Transfer Learning

Representation

manifold learning,
geometry analysis
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Model Zoos

Datasets:

• MNIST, F-MNIST, SVHN, USPS, STL, 
CIFAR10, CIFAR100, Tiny ImageNet, EuroSAT

Architectures

• CNN: 2464 paramters (ours)
• CNN: 4970 paramters (Unterthiner et al., 2020)
• ResNet-18: 11 million parameters (He, 2015)

Hyperparamters

• Seed, activation, initialization method, 
learning rate, regularization, …

Our Zoos Data Architecture Samples

Tetris-Seed Tetris MLP (100 params.) 75k

Tetris-Hyp Tetris MLP (100 params.) 217.5k

MNIST-Seed MNIST CNN (2464 params.) 50k

F-MNIST-Seed F-MNIST CNN (2464 params.) 50k

MNIST-Hyp-1-Fix-Seed MNIST CNN (2464 params.) ~57.6k

MNIST-Hyp-1-Rand-Seed MNIST CNN (2464 params.) ~57.6k

MNIST-Hyp-5-Fix-Seed MNIST CNN (2464 params.) ~64k

MNIST-Hyp-5-Rand-Seed MNIST CNN (2464 params.) ~64k

Zoos from Unterthiner et al., 2020 Data Architecture Samples

MNIST-Hyp MNIST CNN (4970 params.) 270k

F-MNIST-Hyp F-MNIST CNN (4970 params.) 270k

CIFAR-Hyp CIFAR10 CNN (4970 params.) 270k

SVHN-Hyp SVHN CNN (4970 params.) 270k

• More than 50k neural networks
• 2.6 million model states
• Sparsified Model Twins

all models are open source: www.modelzoos.cc
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NN Weights Augmentations

Augmentations:

• increase number of training samples
• Encode inductive bias

Erasing  & Noise:

• Adaptations from computer vision

Permutation Augmentation:

• Leverages symmetries in weight space
• Proof: equivalence holds forward & backward
• Scales with faculty of # neurons/kernels
• Fully-connected and convolutional layers

• Full Details are in the appendix of our paper

erasing noisepermutation

Augmentations

Assumptions

Forward pass

Backward pass
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Autoencoding Transformer



68

Experiment Results

the higher -> the better
R^2 for regression downstream tasks

linear Acc: 95%

linear Epoch: 8
z)'
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Embedding Homogeneity
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Embedding Homogeneity



EuroSAT Model Zoo & Sparsified Twins
EuroSAT - Dataset
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EuroSAT Model Zoo

Patch-based 

Classification



EuroSAT Model Zoo & Sparsified Twins
Test AccuracySparsity Ratio
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model zoo 

saturation

sparsification areasparsification area



Overview

73

Self-supervised Learning

Approach:

• Contrastive Learning

• Augmentation free

• CNNs & Transformer

Application

• Land-use Classification

• Single-class / Multi-class 

• Segmentation

Hyper-Representations

Approach:

• Contrastive Learning

• Model Zoos

• CNNs

Application

• Model analysis

• Sample unseen models

• Sparsificaiton

Shared-Backbones/Heads

Approach:

• Muilti-modal Fusion

• Multi-task Learning

• Auxiliary Tasks

Application

• NO2 estimation

• Power Production

• CO2 estimation



Questions?
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