

A Deep Feed-Forward Neural Network to reconstruct the Mediterranean 3D chlorophyll-a and temperature fields from satellite measurements

Michela Sammartino¹, Bruno Buongiorno Nardelli², Salvatore Marullo^{3,1} Rosalia Santoleri¹

¹ Institute of Marine Sciences - National Research Council (ISMAR-CNR), Rome, Italy ² ¹Institute of Marine Sciences - National Research Council (ISMAR-CNR), Naples, Italy ³ ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Frascati, Italy

(michela.sammartino@artov.ismar.cnr.it)

European Space Agency

ECMWF–ESA Workshop on Machine Learning for Earth Observation and Prediction 14-17 NOVEMBER 2022

...at surface

Satellite provides data at high resolution with synoptic coverage and high repetitiveness but cannot sense the ocean deep layers

...along the vertical component

In situ data provide accurate information but with:

- Practical difficulties
- Punctual data/discrete samples .
- Time consuming/economic effort
- Low coverage

3D ocean interior structure remain undersampled

Introduction

Synergic use of data coming from different platforms

Integrated with new modelling approaches to improve the ocean observing system

Aim of the work

Reconstruction of the 3D chlorophyll and temperature fields from satellite data through the application of a Multi-Layer Perceptron (MLP)

- To exploit the resolution of **satellite imagery** to project chlorophyll and temperature surface data at deeper layers.
- To overcome the **discontinuous nature of** in situ datasets.
- To demonstrate one of the possible applications of artificial **intelligence** to the ocean data for an improved **ocean monitoring**.

Introductio

Materials and methods >

Machine Learning model

- Computational tools that combine many simple processing units to obtain complex responses (Machine Learning).
- A different approach from the conventional modelling, able **to find the non-linear functional relationship among the variables**, without *a priori* assumption of suitable function or algorithm.

... in our work

Deep Feed-Forward Neural Network (FFNN)

Error Backpropagation algorithm

Chlorophyll results

- Network validation against *in situ* data showed very promising results, both on the training and test set;
- Comparable statistics both for training and test data set, suggesting the network is no-overfitting during the learning phase;
- The highest RMSE is observed from 20 m to 60 m of depth in agreement with the Deep Chlorophyll Maximum variations.

Chlorophyll vertical profiles reconstructed from satellite

Observed Chla profile
MLP-predicted Chla profile
STD of Observed Chla
STD of MLP-predicted Chla

• Surface MLP-predicted Chl*a* very close to observed value for almost classes;

• Reconstruction of the DCM postion;

• Overlap of shaded areas (incorporation of high Chla variability in the Med);

• Less accurate prediction for high [Chla_{surf}] ranges (maybe extreme bloom events less represented in the dataset).

(from Sammartino et al., 2020)

Introduction

Temperature results

- The network simulates the observed values with good accuracy;
- The statistics are better for temperature than those obtained for chlorophyll;
- No-overfitting during the learning phase;
- Maximum variability between 20 m and 80 m of RMSE curve, usually related to the mixed-layer depth (MLD) variations, impacting also the DCM position.

Temperature vertical profiles reconstructed from satellite

A sensitivity analysis of the input influence on the prediction

- Tests on different combinations of input surface data revealed that the best MLP setup included all the considered remote sensing
- For both variables, the addition subtraction of the ADT determines a strong impact and reduction of the errors

Introduction

A comparison with reference Mediterranean Climatology (MEDATLAS)

Conclusions and future works

- Synergy between data of different nature is possible, allowing the extrapolation of surface marine variables to deeper layer (from 2D -> 3D);
- The prediction capability of such neural networks is strictly depending on **training dataset features** and the **choice of co-predictors**, that deeply influence the network's performance;
- The application of innovative techniques as those based on artificial intelligence to data acquired by multiple and interdisciplinary observing systems represents a useful approach to describe the ocean state evolution from surface to the deeper layers;
- Machine learning techniques applied to satellite estimates demonstrated huge and still only minimally exploited potentialities, both as predictive models and to better initialize numerical bio-geophysical models.

... works in progress

- Test additional predictors, for instance, directly ingesting radiances instead of satellite chlorophyll, or including input from new gap-free regional and multi-sensor sea surface salinity at high resolution (Sammartino et al. 2022);
- Implementing **different types of neural networks** (e.g. artificial recurrent neural network) for the reconstruction of the **3D structure of other variables** in the Mediterranean Sea (e.g. vertical salinity).

Thank you for your attention!

Principal references

Pubblication

- Lek, S. and Giraudel J.L. and Guégan, J.-F. Neuronal networks: Algorithms and architectures for ecologists and evolutionary ecologists. In Artificial Neuronal Networks; Springer: Berlin, Germany, 2000; pp. 3–27.
- Sammartino, M.; Buongiorno Nardelli, B.; Marullo, S.; Santoleri, R. An Artificial Neural Network to Infer the Mediterranean 3D Chlorophyll-a and Temperature Fields from Remote Sensing Observations. Remote Sens. 2020, 12, 4123. https://doi.org/10.3390/rs12244123
- Sammartino, M.; Aronica, S.; Santoleri, R.; Buongiorno Nardelli, B. Retrieving Mediterranean Sea Surface Salinity Distribution and Interannual Trends from Multi-Sensor Satellite and In Situ Data. Remote Sens. 2022, 14, 2502. <u>https://doi.org/10.3390/rs14102502</u>

<u>Website</u>

<u>https://dficlub.org/future-of-machine-learning/</u> <u>https://en.wikipedia.org/wiki/Earth_observation_satellite</u> <u>https://www.gim-international.com/content/news/sentinel-2b-satellite-launched-into-orbit</u> <u>http://gosweb.artov.isac.cnr.it/viewer/viewer.php</u>