

Machine learning in (and beyond) the ESA Climate Change Initiative

Carsten Brockmann¹, CCI Knowledge Exchange Coordinator

With contributions from S. Mecklenburg², Ed Pechorro², P. Kershaw³, R. Doerffer^{1,4}, D. Müller¹, R. Quast¹, J. Wevers¹, L. Bock⁵

¹Brockmann Consult GmbH, ²ESA, ³UKRI-STFC CEDA, ⁴HEREON, ⁵DLR

Essential Climate Variables (ECV)

- An ECV is a physical, chemical or biological variable or a group of linked variables that critically contribute to the the characterisation of the Earth's climate
- ECV datasets provide the **empirical evidence** needed to understand and predict the **evolution of climate**, to guide **mitigation** and **adaptation** measures, to assess risks and enable attribuion of climate events to underlying causes, and to underpin climate services. They are required to **support the work of the UNFCCC and the IPCC**
- ECVs need to be
 - Relevant
 - Feasible
 - Cost effective

ESA Climate Change Initiative (CCI)

WMO defined **54** Essential Climate Variables **36** benefit from space observations **21** generated by ESA Climate Change Initiative

From S. Mecklenburg (ESA Climate Office)

CCI Open Data Portal and Opportunities for ML

Combination with non ESA data, Climate analysis, forecasting and scenarios

Adapted from P. Kershaw (CEDA, CCI Knowledge Exchange Project)

CCI ECV Projects

From ESA Climate Office *Note on CCI & AI* 2019 Q4 (v0.23) & 2021 Q4 (v1.0) • Includes - Current use ; Planned use ; Resource gaps for AI ; Future Concepts

CCI Open Data Portal and Opportunities for ML

Combination with non ESA data, Climate analysis, forecasting and scenarios

Adapted from P. Kershaw (CEDA, CCI Knowledge Exchange Project)

ML in ECV Production Algorithms – Cloud Masking

- More than Cloud Masking Pixel Identification as first step in a processing chain
 - cloud, snow, land, water, ...
 - critical cases: semi-transparent clouds, fractional snow cover, mangroves, muddy water, ...
 - relevant for basically all ECVs using optical EO data: ECVs: Clouds, Aerosols, LandCover, Fire, Snow, Ocean Colour,

Axel Rohkohl, fotocommunity

www.beyondarctic.com

© pixabay.com | Ravini

- Classical ML task:
 - Traning data set with labelled pixels
 - Various methods applied: DL, NNs, RF, SVM, ...
- Most important: training dataset

Jepsen et al, 2019

PixBox – Manually Selected Pixel Collection

SLSTR night time collection

44.500 night time pixels collected

194 products from 44 different orbits from 3 different day (15.12.2016, 15.03.2017, 15.06.2017)

NN Training - Separability

Sentinel-3 OLCI

Validation

PixBox (validation sample)

EO	Class	Clear all Land	Clear Mountain	Clear Urban	Clear Desert	Clear Salt-Lake	Clear Other Land	Cloud	Sum
	CLEAR	2841	160	116	450	8	2107	267	5949
	CLOUD	717	289	65	60	29	274	4282	5716
	Sum	3558	449	181	510	37	2381	4549	11665

EO	Class	Clear	Opaque	Thick	Med	Thin	Sum
	CLEAR	3688	1277	74	1010	746	6795
	CLOUD	306	3912	394	1499	268	6379
	Sum	3994	5189	468	2509	1014	13174

Ocean Colour - Physically based ML

Bio-Optical Model

Natural Variabity and Covarianvce of Optical Properties

Relative absorption/ scattering from the NOMAD data set (NASA)

Training Dataset: Radiative Transfer Simulations

Simplified scheme of MLP - NN

training =0.000410 test =0.000413

ratio avg.train/avg.test=0.993550

average of residues:

Training Performance / Sensitivity Tests of NNs

Test of a_pig with an extra random error with a standard deviation of 3%

Test of add with an extra random error with a standard deviation of 3%

Applicability Test ("Out-of-Scope")

- Important to detect toa radiance specta which are not in the simulated training data set
- These are out of scope of the atmospheric correction algorithm
- Autoassociative neural network with a bottle neck layer

Functions also as nonlinear PCA i.e. bottle neck number of neurons Provide estimate of Independent components

For the GAC training data Set of ~ 1Mio. Cases Bottleneck minimum was 4-5

OoS example

From R. Doerffer (Brockmann Consult & HZG Research Centre)

19

OoS example

1.40-1.35-

AutoNN test 12x5x12 Yellow Sea transect, MERIS band 7, 664.3 nm

Validation with in-situ

CCI Open Data Portal and Opportunities for ML

Combination with non ESA data, Climate analysis, forecasting and scenarios

Adapted from P. Kershaw (CEDA, CCI Knowledge Exchange Project)

Al Downstream From CCI ECV Production - Example.

Forecasting Environmental Cholera Risk in Coastal India 💹

Estimated 2.9 million cases per year worldwide (WHO, 2017), 57% in Northern Indian Ocean countries

Vibrio cholerae (pathogenic bacteria responsible for cholera disease) found in coastal & estuarine waters

Established relationships between Essential Climate Variables (ECVs) and coastal distribution/ seasonal dynamics of *Vibrio cholerae*

AM Campbell¹, M-F Racault^{2,3}, S Goult^{2,3}, A. Laurenson², Cholera Risk: A Machine Learning Approach applied to Essential Climate Variables. *Submitted* to Int. J. Environ. Res. Public Health

¹ESA Climate Office, ²Plymouth Marine Laboratory, ³National Centre for Earth Observation

Exploring potential of using multiple CCI-ECVs in a cross-ECV approach within a machine learning application to understand these complex relationships and forecast when outbreaks would occur

Study site: India coastal districts, monthly resolution, 2010-2018 based on cholera outbreak data availability

CCI ECV Datasets used – SST, Sea Surface Salinity, Ocean Colour, Sea Level, Soil Moisture, Land Surface Temperature. With AVISO SLA, ERA Interim Precipitation, IDSP Cholera Outbreaks.

Figure 1: Cholera outbreaks recorded in coastal India districts within the study period 2010-2018

ESA Deep Earth System Data Lab

- Integrator of **Earth System and Climate data** from different ESA activities and other data owners into a single infrastructure.
- A platform for collaborative research with focus on AI allowing different scientists and teams to work collectively sharing data, tools and expertise.
- Support for **implementation and execution of individual projects** from ESA, particularly from the Science Clusters or from the scientific community.

Feature Selection and Anomaly Detection with the Cube

Figure 1. Longitudinal average (30.25 to 60.0° E) of (a) temperature anomalies (reference period: 2001–2011), (b) absolute temperature, and (c) GPP anomalies in 2010 with a contour of temperature anomalies (+3, +5 K).

Figure 2. Data processing for detecting multivariate anomalies.

Flach et al, 2018: Contrasting biosphere responses to hydrometeorological extremes:

revisiting the 2010 western Russian heatwave

Machine learning to advance climate model evaluation and process understanding

A study performed by the ESA CCI Climate Modelling Group (CMUG).

Study will be undertaken by DLR and IUP (Univ. Bremen)

What's next in CCI?

Adapted from P. Kershaw (CEDA, CCI Knowledge Exchange Project)

CCI CMUG: Machine learning to advance climate model evaluation and process understanding

Developing and applying machine learning (ML) techniques for advanced climate model evaluation and process understanding with ESA CCI data

→ Creating enhanced ML-based observational products from observations and climate models

→ Causal networks derived from observations will be compared to those from state-of-the-art global climate models (CMIP6 and ICON model) to enhance process-oriented model evaluation with ESA CCI data

Thank you for your attention

Carsten Brockmann, ESA CCI Knowledge Exchange Coordinator

http://climate.esa.int

carsten.brockmann@brockmann-consult.de