

ML and EO for (global) mapping of the environment: Discussing challenges of model extrapolation and accuracy assessment

Hanna Meyer & Edzer Pebesma

Global maps of ecological variables based on machine learning (a few of many examples)

van den Hoogen et al., 2019

Moreno-Martínez et al., 2018

Hengl et al., 2017

Bastin et al. 2019

How do we get "maps" of ecosystem variables?

Predictors

Machine learning as a magic tool to map everything?

Reported performance measures are impressive but there are increasingly doubts

Wissenschaft

Wenn die KI daneben liegt

Welche Fehler drohen, wenn Forscher Wissenslücken per Computer schließen wollen, zeigen zwei aktuelle Klimastudien.

Von Tin Fischer

November 2019, 16:44 Uhr / Editiert am 9. November 2019, 17:42 Uhr / DIE ZEIT
 Nr. 46/2019, 7. November 2019 / 9 Kommentare

Nature 574, 163-166 (2019) BY DOUGLAS HEAVEN

Home / News & Opinion

Researchers Find Flaws in High-Profile Study on Trees and Climate

Comment | Published: 23 August 2021

Conservation needs to break free from global priority global forest restoration, but the authors insist their origina mapping

Oct 17, 2019 KATARINA ZIMMER Carina Wyborn 🗠 & Megan C. Evans

Nature Ecology & Evolution (2021) | Cite this article

Have we been too ambitious? Do our models fail?

How do we assess the accuracy of global maps?

Ideal: Design-based inference using a probability sample

Global reference data used in machine learning applications

sample-to-sample

Design based approaches not possible!

distance function

Performance assessment by default random cross-validation

Cross-validation in general:

- Divide data into k folds
- Repeatedly train models on k-1 fold
- Test on held back data

Random CV indicates here how well we can **reproduce** the training data

Performance assessment by a simple spatial

density

cross-validation

Indicates how well we can make spatial predictions!

Reproduce figures: https://hannameyer.github.io/CAST/articles/cast04-plotgeodist.html

Performance assessment using different CV strategies

Spatial validation reveals poor predictive performance of large-scale ecological mapping models

Pierre Ploton [□], Frédéric Mortier, Maxime Réjou-Méchain, Nicolas Barbier, Nicolas Picard, Vivien Rossi, Carsten Dormann, Guillaume Cornu, Gaëlle Viennois, Nicolas Bayol, Alexei Lyapustin, Sylvie Gourlet-Fleury & Raphaël Pélissier

Nature Communications 11, Article number: 4540 (2020) Cite this article

..but spatial CV methods are still under discussion...

...but spatial CV has also been blamed to be too pessimistic. Why?

Alexandre M.J.-C. Wadoux ^a $\stackrel{\bowtie}{\sim}$ $\stackrel{\bowtie}{\bowtie}$, Gerard B.M. Heuvelink ^b, Sytze de Bruin ^c, Dick J. Brus ^d

CV predictions are harder than the actual prediction task

It's obviously NOT the right way here. Why?

■ Design-based Random K-fold CV Spatial K-fold CV B-LOO CV

Prediction situations created during CV need to resemble those encountered while predicting the global map from the reference data

Suggestion of a nearest neighbor distance matching LOO CV

Received: 20 September 2021 | Accepted: 8 March 2022

DOI: 10.1111/2041-210X.13851

RESEARCH ARTICLE

Methods in Ecology and Evolution Recoiling and E

Nearest neighbour distance matching Leave-One-Out Cross-Validation for map validation

Aim: Prediction situations created during CV resemble those encountered while predicting the map

Exclude
 Test

Mila et al., 2022

Train

Suggestion of a nearest neighbor distance matching?

Nearest neighbour distance matching Leave-One-Out Cross-Validation for map validation

Carles Milà¹ | Jorge Mateu² | Edzer Pebesma³ | Hanna Meyer⁴ |

Aim: Prediction situations created during CV resemble those encountered while predicting the global map

Relevance of choosing a suitable CV strategy

- Cross-validation strategy affect:
 - Performance estimate
 - Selected hyperparameters
 - Variable selection
- Consequences of using a unsuitable CV:
 - Unreliable performance estimates
 - Models that can well reproduce but not necessarily predict
- Hence, CV strategies that fit the prediction task are required!

But is this sufficient for reliable global mapping?

Limits to accuracy assessment

- Mapping requires prediction far beyond clustered reference data
- Transfer to new space required
- New space might differ in environmental properties

...but what happens if the model has never "seen" such new predictor properties?

Predictions and common uncertainty measures are unreliable beyond training data

Meyer & Pebesma 2021

Shouldn't we avoid predictions into "unknown space"?

Suggestion: Area of Applicability (AOA)

Methods in Ecology and Evolution

Predicting into unknown space? Estimating the area of applicability of spatial prediction models

Hanna Meyer X, Edzer Pebesma

We try to derive the area...

- to which the model can be applied because it has been enabled to learn about relationships
- where the estimated performance holds
- for which uncertainty measures can be interpreted

Suggestion of a method to derive the AOA

Simulated example: Predictors and response

Meyer & Pebesma (2021)

Simulated example: Results

Reproduce example: github.com/HannaMeyer/ MEE_AOA

Conclusions & Discussions

- Results are not just nice maps but used for subsequent modeling, nature conservation, risk assessment,...
- We think that predictions should only be made for the AOA (accept gaps!?)
- We (= producers of the maps) are responsible for clearly indicating usage of maps, don't leave it to the user
- Methods suggested here are implemented in the R package CAST
- We have to work on methods to better assess the prediction performance and uncertainties, especially local performance estimates

References

- Bastin et al. 2019: The global tree restoration potential. Science. Vol. 365, Issue 6448, pp. 76-79.
- Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile data support global mapping and modelling (wosis snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).
- Hengl et al. (2017): SoilGrids250m: Global gridded soil information based on machine learning. PloS one 12(2): e0169748.
- Van den Hoogen, J., Geisen, S., Routh, D. et al. (2019): Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198.
- Kattge, J. et al. TRY plant trait database enhanced coverage and open access. Glob. Change Biol. 26, 119–
 188 (2020).
- Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).
- Meyer H, Pebesma E. 2022. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications 13.
- Milà, C., Mateu, J., Pebesma, E. & Meyer, H. Nearest neighbour distance matching Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution. 00, 1–13 (2022).
- Moreno-Martinez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).
- Ploton, P. et al. (2020): Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540.
- Wadoux, A. M.-C., Heuvelink, G. B., de Bruin, S. & Brus, D. J. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Modell. 457, 109692 (2021).

