Inferring High-resolution Near-surface NO₂ Concentrations over Belgium through Convolutional Neural Networks

Wenfu Sun^{1,2} wenfu.sun@aeronomie.be

Frederik Tack¹, Lieven Clarisse², Rochelle Schneider³, Michel Van Roozendael¹

¹BIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, Belgium

²Spectroscopie de l'Atmosphère, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium

³Ф-Lab, European Space Agency (ESA-ESRIN), Frascati, Italy

Concerns about NO₂

 NO_2

health

effects

https://www.epa.vic.gov.au/for-community/environmentalinformation/air-quality/nitrogen-dioxide-in-the-air

A dramatic decrease in NO₂ during the Covid-19 outbreak

Inferring NO₂ near-surface concentrations

Surface NO₂ is of great concern due to its adverse impacts on air quality and human health

Measurements

- Accurate and consistent estimations
- Limited spatial coverage

Satellite observations

- Large spatial coverage
- Limited temporal resolution
- Coarse spatial resolution
- Low sensitivity to surface NO₂

Ancillary datasets

Meteorology Emissions Society

Land information

Physical method

- Good knowledge (physics and chemistry)
- Can be constrained by reality (data assimilation)
- Computationally intensive, coarse spatial resolution
- Biases caused by mechanism and EMI inventories

https://www.issibern.ch/teams/dataassimsphere/

Empirical statistical method

- Flexible modeling and can achieve high resolution
- Limited ability for very complex nonlinear relationship

Mo et al., Sci. Total Environ., (2021)

Feuillet et al., Int. J. Health Geogr., (2015)

Inferring NO₂ near-surface concentrations by machine learning

Current ML methods

- Random Forest (RF)
- eXtreme Gradient Boosting (XGBoost)
- Neural Network (NN)
-

Machine learning method

- Can establish a complex nonlinear mapping
- High accuracy, efficiency, and fine resolution
- Risk of manufacturing artifacts when mapping

Hourly 100m x 100m (XGBoost)

Kim et al., Remote Sens. Environ., 2021

Di et al., Environ. Sci. Technol., 2020

Wei et al., Environ. Sci. Technol., 2022

Start with models that used in previous works

Test models on sites-based 10-folds Cross validation

R²: 0.65 Pearr: 0.81 RMSE: 6.42 MAE: 4.62

Surface NO₂ mapping by XGBoost

Surface NO₂ mapping by 2D-CNN

2D-Convolutional Neural Network

- Given NO₂ has a relationship with surrounding environments.
- 2D-CNN considers neighboring pixels of the target grid.
- Receptive field size is essential to model predictive accuracy and pattern continuity.
- A large receptive field will introduce more predictors' variance in the model
 - The model will benefit from fineresolution predictors.
 - The model will become conservative when many predictors are downsampled from coarse resolution as variance doesn't increase significantly.

Compare XGBoost and 2D-CNN on spatial mapping

 R^2 : 0.74

Pearr: 0.86

RMSE: 5.47

MAE: 4.00

A tree-based XGBoost performs best in statistical tests, but discrete patterns indicate obvious artifacts, especially in local mapping.

 R^2 : 0.68

Pearr: 0.82

RMSE: 6.14

MAE: 4.47

The 2D-CNN considering neighboring pixels within 5 Km provides a continuous NO₂ pattern and mitigates the artifacts to a large extent, but still sacrifices some accuracy.

Sun et al., (2022, in preparation)

Compare XGBoost and 2D-CNN on time-series

- 2D-CNN and XGBoost can identify the dramatic change in NO₂ during the Covid-outbreak.
- XGBoost performs better in time series since 2D-CNN becomes conservative after Covid and cannot well capture the difference between two years.

Conclusion

- Use machine learning models to map surface NO₂ should consider both accuracy and spatial pattern.
- The 2D-CNN model provides surface NO₂ mapping with continuous patterns and fewer artifacts.
- In comparison to XGBoost, 2D-CNN performs conservatively and loses some accuracy.
- Auto-correlation within variables may cause the model to capture the wrong relationship and manufacture other possible artifacts.
- Given the trade-off between predictive accuracy and plausible spatial pattern, the ensemble of different models could be an option.

Contact: Wenfu Sun

wenfu.sun@aeronomie.be

Thank You

