ESA-ECMWF Workshop 2022

Inferring High-resolution Near-surface NO₂ Concentrations over Belgium through Convolutional Neural Networks

Wenfu Sun^{1,2} wenfu.sun@aeronomie.be

Frederik Tack¹, Lieven Clarisse², Rochelle Schneider³, Michel Van Roozendael¹

¹BIRA-IASB, Royal Belgian Institute for Space Aeronomy, Brussels, Belgium ²Spectroscopie de l`Atmosphère, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium ³Φ-Lab, European Space Agency (ESA-ESRIN), Frascati, Italy

2022-11-15

Concerns about NO₂

ULB

LIBRE DE BRUXELLES

Credit: ESA

Inferring NO₂ near-surface concentrations

UNIVERSITÉ ULB LIBRE DE BRUXELLES

Surface NO₂ is of great concern due to its adverse impacts on air quality and human health

Measurements

Accurate and consistent estimations

Satellite observations

🕑 Large spatial coverage

Limited spatial coverage

- Limited temporal resolution
- Coarse spatial resolution
- Low sensitivity to surface NO₂

Ancillary datasets Meteorology Emissions Society Land information

- Computationally intensive, coarse spatial resolution
- Biases caused by mechanism and EMI inventories

Empirical statistical method

- Flexible modeling and can achieve high resolution
- Limited ability for very complex nonlinear relationship

Mo et al., Sci. Total Environ., (2021)

Feuillet et al., Int. J. Health Geogr., (2015)

Current ML methods

- Random Forest (RF)
- eXtreme Gradient Boosting (XGBoost)
- Neural Network (NN)

.....

Machine learning method

- Can establish a complex nonlinear mapping
- High accuracy, efficiency, and fine resolution
- Risk of manufacturing artifacts when mapping

Kim et al., Remote Sens. Environ., 2021

Wei et al., Environ. Sci. Technol., 2022

Surface NO₂ mapping for Belgium by machine learning

Surface NO₂ mapping for Belgium by machine learning

Surface NO₂ mapping for Belgium by machine learning

Surface NO₂ mapping by XGBoost

49°N

7°E

6°E

2°E

3°E

4°E

5°E

-- Kim et al., *Remote Sens. Environ.*, 2021

Surface NO₂ mapping by 2D-CNN

2D-Convolutional		
Neural Network		

- Given NO₂ has a relationship with surrounding environments.
- 2D-CNN considers neighboring pixels of the target grid.
- Receptive field size is essential to model predictive accuracy and pattern continuity.
- A large receptive field will introduce more predictors' variance in the model
 - The model will benefit from fineresolution predictors.
 - The model will become conservative when many predictors are downsampled from coarse resolution as variance doesn't increase significantly.

Compare XGBoost and 2D-CNN on spatial mapping

R ² : 0.74	A tree-based XGBoost performs best
Pearr: 0.86	in statistical tests, but discrete
RMSE: 5.47	patterns indicate obvious artifacts,
MAE: 4.00	especially in local mapping.

R ² : 0.68	The 2D-CNN considering neighboring pixels
Pearr: 0.82	within 5 Km provides a continuous NO_2
RMSE: 6.14	pattern and mitigates the artifacts to a large
MAE: 4.47	extent, but still sacrifices some accuracy.

Sun *et al.*, (2022, in preparation)

Sun et al., (2022, in preparation)

JNIVERSITÉ

LIBRE

• 2D-CNN and XGBoost can identify the dramatic change in NO₂ during the Covid-outbreak.

 XGBoost performs better in time series since 2D-CNN becomes conservative after Covid and cannot well capture the difference between two years.

Conclusion

- Use machine learning models to map surface NO₂ should consider both accuracy and spatial pattern.
- The 2D-CNN model provides surface NO₂ mapping with continuous patterns and fewer artifacts.
- In comparison to XGBoost, 2D-CNN performs conservatively and loses some accuracy.
- Auto-correlation within variables may cause the model to capture the wrong relationship and manufacture other possible artifacts.
- Given the trade-off between predictive accuracy and plausible spatial pattern, the ensemble of different models could be an option.

Contact: Wenfu Sun wenfu.sun@aeronomie.be

Thank You

ESA-ECMWF Workshop 2022