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Background

Vision for the Future

* Sensor Web
* Ways to use the data generically
e Automatic recognition of latent patterns
e Simple combination of information
* Tiered, interconnected view of data

* |ssues
 Different resolutions/grids
* Instrument-specific modalities
* Complexity increases with more data
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R B M S Hidden Layer
Hidden Layer
Biases: ¢;j

Weights: W;;

Visible Layer

* Simple 2 layer learning architecture
* Input layer

* Hidden Iayer Visible Layer
Biases: b;

* Unsupervised
* Generative
* “Restrictions”
* Fully connected inter-layer oteks alx) |5, (710)
* No intra-layer connections
* Goal
* Reconstruct distribution of input as output
* Generica”y | Original Gaussian PDFs | KL Area to be Integrated
* Stackable - Creates Deep Belief Network (DBN) ' b, (°I0)

T
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RBM Learning .
 Initialize (2, h) ZZ!M’! +Zb] J+Z( 1)

=1 j3=1
* Approximate samples from input 1
distribution, given output (Gibb’s ])(.’15) — — E exp (—E(:If, /,},))
Sampling) A ,
. l
* Attempt to reconstruct input, |
based on apprOXImated Samp|eS, ﬁzlnEZexp(—E(;r.h)) :hlz}:(!xp(—E(;r. h)) —an?exp(—E(:r,h))
W, c,and b
* Adjust W, ¢, and b based on desire Vi, Lo = (T jhi)data — (T jhi) model
to minimize reconstruction error

* Repeat until convergence Vo, L~ p(h; = 1|x0)a:2 — p(h; = 1|1A)l§
* Minimization of difference of free '
energy between p(x) and p_hat(x)

h=

x0 x1
T = O: data T =1: 1-step T = infinity: equilibrium

rrrrrr tructions samples

11/15/22 jpl.nasa.gov



What Are We Reconstructing?

* Image Segmentation
* Agnostic to scene size
e Architecture can be used for 1-D and 2-D data

* For 2-D, still require each input to represent its | | | |
surroundings S

* Vectorize each pixel + all neighboring pixel | |
« 2-D to 1-D Transformation -

* Each sample’s feature-set consists of 9 pixels X |
instruments M channels | |

* What are we reconstructing? | | | |

* The distribution of sets of pixels across scene(s) from a
single instrument or set of instruments

* |nthe future
* Test out convolutional RBMs in architecture similar to ‘ ‘ ‘ . ‘ ‘ ‘
those that do supervised image/instance
segmentation

* Like Fully Convolutional Networks (FCNs)
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Hidden Layer

000
* Output/Hidden Layer size )
* <input size " ges by o o e ° e

RBM Architecture

Biases: Cj

Weights: W

« Compressed representation Visible taver
* Potential loss of specificity |
. . pLx; X/ D, (Pl@)
* > input size -t
* Expanded dimensionality .
* Non-linear relationships in -
. . p Original Gaussian PDF’s KL Area to be Integrated
original feature space more
easily found/represented . Pa(PI2)
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RBM - Output

* Machine interpretable matrix

*NXH

e Useful for further unsupervised
learning
* Not so useful for validation or
further human-in-the-loop
processing
* Need - A way to translate

information back to human
readable form
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Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

* Agglomerative Clustering
e Each sample is its own cluster

* Merge based on heuristic until user-
specified number of clusters remains

* Heuristic here is merge that
minimizes variance/variance increase

* BIRCH is memory efficient and fast(er)

* Unlike many other agg. clustering
methods

‘ ‘ " H * Contains intermediate step of algorithm-
kK18 defined number of clusters
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Structure Visualization

Y —

(a) Raw Landsat-8 + Sentinel-2
Fusion PCA

& & - H F £l L]

(b) Raw Landsat-8 + Sentinel-2
Fusion t-SNE

(c) RBM Landsat-8 + Sentinel-2
Fusion t-SNE
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Application: Detection of Smoke Plumes and Active Fires

* Needs i RS-
" wt C

* Fire and smoke products are available from some instruments
* Not easily accessible
* Different data formats, content, structure
* Not interoperable

* Instrument specific implementation

* |ssues
e Confusion with clouds
e Limited fire identification

Methodology to make data more “plug-and-play”

e Per-instrument manual segmentation for supervised
machine learning efforts would be very time consuming

 Estimate ~30 minutes/ scene for millions of scenes Williams Flats Fire’
#7776 Audust 2019
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Background

Remote Sensing Views of the Sheridan Fire from FIREX-AQ (16 August 2019)
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Williams Flats Fire 8 August
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Williams Flats Fire 6 August 2019

Labels
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Williams Flats Fire 8 August
2019
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Table 3: Summary of Fire Detection Comparison of subset of produced products to pre-
Existing products. Total pixel count is the total number of pixels tested. Pre-existing fire
pixel count is the number of pixels labeled as fire in the pre-existing product. RBM-based
fire pixel count is the number of pixels labeled as fire in our product. % Agreement is the
percentage of fire pixels in the pre-existing product that are also identified as fire in our
product. % False positive is the % of fire pixels in our product that are clearly mislabeled.
¢ % True positive is the % change of fire pixel count within the tested pixels from the
pre-existing products to our products. The first two rows evaluate our MASTER + eMAS
fusion product against both the pre-existing MASTER fire detection product, and the
eMAS fire detection product.

Dataset  Total Pixel Pre- RBM- % Agree- % False 0 % True
Count Existing  Based Fire ment Positive Positive
Product Pixel
Fire Pixel Count
Count
MASTER 22087108 147369 131067 72.9 0.0 -11.0
eMAS 43614368 9255 21710 717 13 234.6
eMAS + 2492030 284 1227 86.6 0.0 432.0
MASTER
Fusion
VIIRS 40129041 41 374 81.8 0.0 912.1
GOES 18750000 38 31 75.0 0.0 -18.0
MISR + 5497240 77 55 63.2 0.0 -28.8
MODIS
Fusion

11/15/22

Table 4: Summary of smoke detection comparison of subset of produced datasets to
manually segmented products. Total pixel count is the total number of pixels tested.
Man. seg. smoke pixel count is the number of pixels labeled as smoke in the manually
segmented product or in MISR's SVM product’s smoke class. RBM-based smoke pixel
count is the number of pixels labeled as smoke in our product. % Agreement is the
percentage of smoke pixels in the pre-existing product that are also identified as fire
in our product. % False positive is the % of fire pixels in our product that are clearly
mislabeled. & % True positive is the % change of smoke pixel count within the tested
pixels from the manually segmented products to our products.

Dataset ~ Total Pixel ~ Baseline RBM-  %Agree- %False 0 % True

Count Smoke Based ment Positive  Positive
Pixel Smoke
Count Pixel
Count
MASTER 22087108 43613537 42824132 914 7.5 071
eMAS 11205711 2738986 2602037 85.6 2.1 5.0
eMAS+ 2492030 248108 230244 90.7 0.0 7.2
MASTER
Fusion
GOES 18750000 50960 40462 73.6 58 0.0
MISR + 5497240 30884 34716 74.3 0.0 114
MODIS
Fusion
17



Use Cases

* Image Segmentation

e Static scenes

11/15/22

 Single and multi-sensor

* Instrument and algorithm development

* Minimal ground truths available
* Current Use-Cases
* Wildfire, smoke, and burn scar

Harmful algal bloom
characterization

Water turbidity
Water bodies & ice
lonospheric anomalies

e Potential for subset classifications

* Multiple clusters per final retrieval

* Labels can be generated at a large
enough scale and fed to a lightweight
supervised model for operational use

* On ground and onboard detection

capabilities

Current Research

Code optimization

Uncertainty Quantification

Convolutional Architectures for

unsupervised feature extraction

Expansion of regions + instrument sets

for fire + smoke plume identification &

tracking

Include other kinds of

instruments/tasks

e Utilization of SAR, etc. for

improvement of burn scar
detection capabilities

Open source release of data and

software
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Current Research -
Convolutional Architectures

Unsupervised image segmentation using CNN feature extraction

Utilization of ConvRBM layers e & i .
e Architecture like that of Fully bodudomas (A ol i ot
7 ° 2 propagation

Convolutional Network (FCN) - : T o
supervised instance segmentation [F s ]\ P teooiing laver :

Argmax

Classification

(1% 1, q)

architecture 1 | nk _
o Apply per-pixel clustering to result N SiaResmGre L 2L ] 2 i
e Future Work L\
e Test other architectures that are ifvistole tayer} —
successful in supervised domains AN eeture extacion ok Popegion Syl iy s
e Traditional CNN i 700 5580 o
e U-Net architecture with i 0715
ConvRBM layers e \@@s@@
e Test semi-supervised approach with )
clustering integrated in training T J

0 00 21
b oagh P

i V/’ o L t
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.
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Current Research - Shape
Approximation/Tracking Metrics

{18,650 438 £0g _118 360 _118 200 138,050 117800

e Utilization of shape approximation and i |
cluster distribution to provide a s ool 200
certainty/similarity of plumes in 2 -
separate scenes -

e Manually segmented “ground
truth” proves insufficient for
boundaries of things like
aerosol plumes

e Providing uncertainty
associated with segmentation
would prove useful when
trying to only analyze main
areas of aerosol plumes, etc.
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Current Research -
Uncertainty Quantification

e Utilization of pseudo-log-likelihood from
RBM and uncertainty associated with
clustering

e Manually segmented “ground
truth” proves insufficient for
boundaries of things like
aerosol plumes

e Providing uncertainty
associated with segmentation
would prove useful when
trying to only analyze main
areas of aerosol plumes, etc.
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* Looking Forward

11/15/22

Expansion of regions + instrument sets for current use
cases

Updating web interface to allow for SME user
corrections to be captured and applied via online
learning

Provide support for future/new satellite-based missions
like MAIA, EMIT, SBG, as well as future airborne missions
Utilize transfer learning to allow for hybrid ‘knowledge’
to be used in simpler agile onboard ML architectures
Test potential for 2-D and 3-D reconstruction

210 Input

L

Encoder

4 L - J L

Latent Code

3D ouiput

22



References and Funding Acknowledgement

1. Nicholas LaHaye, Jordan Ott, Michael J. Garay, Hesham El-Askary, Erik Linstead "Multi-Modal Object Tracking and
Image Fusion With Unsupervised Deep Learning", IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 12, issue 8, Aug. 2019, pages 3056—3066.

2. Nicholas LaHaye, Michael J. Garay, Brian Bue, Hesham El-Askary, Erik Linstead, "A Quantitative Validation of Multi-
Modal Image Fusion and Segmentation for Object Detection and Tracking. Remote Sensing 2021", Remote Sensing,
2021, 13, 2364. https://doi.org/10.3390/rs13122364

3. Nicholas LaHaye, Kyongsik Yun, Huikyo Lee, Michael J. Garay, Alex Goodman, Hesham El-Askary, Krzysztof Gorski,
Olga V. Kalashnikova, Erik Linstead, "Development and Application of Unsupervised Machine Learning for Smoke Plumes
and Active Fires Identification from the FIREX-AQ Datasets", Remote Sensing, 2022, under revision.

Funding Acknowledgement: Research reported in this presentation was supported by the
NASA ROSES AIST project - Innovative Geometric Deep Learning Models for Onboard
Detection of Anomalous Events


https://doi.org/10.3390/rs13122364

Thank you!



Backup Slides



Large Scale Validation

 We know the models can represent structure
in data, but how well?

 Evaluate datasets from different
instruments over large areas

» Compare against ground truth
labels

» Measure inside + outside training extent
* |s multi-instrument fusion possible?

* |s there value added?

* |s this a resource-hungry venture

» Whats the performance within large coarse-
scale problems vs. finer-scale problems

11/15/22
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Classifier/Comparison Uncertainty
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(a) MISR SVM Truth
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(¢) Actual MODIS Cloud Mask

(b) Mapped MISR SVM

i

-

wr
MISR SVM vs. MODIS Cloud Mask
N =1948222 Aerdsol Water Lind Sfiow Cléud
Aerosol 0 487 8358 ] 29103
Water 0 157930 98087 0 8591
Land 0 2673 992812 0 16203
Snow 0 0 0 0 0
Cloud 0 8470 76085 0 549423
N = 1948222 Aerdsol Water Lind SHiow Cléud
Aerosol 0.0 1.3 220 0.0 76.7
Water 0.0 59.7 371 0.0 32
Land 0.0 0.3 98.1 0.0 1.6
Snow 0.0 0.0 0.0 0.0 0.0
Cloud 0.0 13 120 0.0 86.7
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(e) MODIS Cloud Mask Truth

— & i 7.%«1,, -

() Mapped RBM Clusters

Comparisons

MISR + MODIS RBM vs. MODIS Cloud Mask

N = 1845900 Aerbsol Wafer Lind Desert Sfiow Cléud
Aerosol 10315 577 195 1422 0 23363
Water 856 180758 5717 63630 0 9641
Land 191 1078 128486 46640 0 3982
Desert 1083 11000 34652 746302 0 15344
Snow 0 0 0 0 0 0
Cloud 2608 16747 201 27752 0 5357515
N = 1845900 Aerbsol Water Lind Deéert Sfiow Cléud
Aerosol 28.8 1.6 05 40 0.0 6.5
Water 03 69.4 2.2 24.4 0.0 37
Land 0.1 0.6 71.2 25.9 0.0 22
Desert 0.1 1.4 43 92.3 0.0 19
Snow 0.0 0.0 0.0 0.0 0.0 0.0
Cloud 0.4 28 0.1 46 0.0 922
MISR + MODIS RBM vs. MISR SVM
N = 1845900 Aeriisol Water Lind Sfiow Cléud
Aerosol 61248 582 14732 1 6094
Water 475 151643 9477 1 3502
Land BESE 3908 1001212 30 24437
Snow 480 18 2443 1529 26375
Cloud 6268 4729 28211 622 488916
N = 1845900 Aeriisol Water Lind Sfiow Cléud
Aerosol 741 07 17.8 0.0 74
Water 0.3 91.9 5.7 0.0 21
Land 0.9 0.4 96.4 0.0 24
Snow 1.6 0.0 7.9 5.0 85.5
Cloud 1.2 0.9 53 0.1 92.5
28 jpl.nasa.gov
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