STARCOP: ML models for on-board detectlon of methane
leaks in multispectral and hyperspectral sensors
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Big picture

e Reducing methane is one of the most easy pathways to limiting
temperature growth to 1.5°C. Although other efforts also have to
take place.

e Methane has short atmospheric lifetime = reducing it now will
have actual and fast impact

e 35% emissions made by humans are from Oil and Gas
industry, most of this is contributed from large leaks (super-
emitters).

e There is a need to precisely detect where do these leak originate
from, to be able to attribute the leaks to companies / exact
sources to fix them.
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e The Problems:

* Methods working with multi-spectral data are manual only
* Hyper-spectral methods produce many false positives
* No standardised ML-ready dataset for methane detection
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e The Problems:

* Methods working with multi-spectral data are manual only
* Hyper-spectral methods produce many false positives
* No standardised ML-ready dataset for methane detection

e The Task:

* Create a testbed dataset of manually verified plume events
* Propose ML models working on multi- and hyper- spectral views of this
data
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e The Problems:

* Methods working with multi-spectral data are manual only
* Hyper-spectral methods produce many false positives
* No standardised ML-ready dataset for methane detection

e The Task:

* Create a testbed dataset of manually verified plume events
* Propose ML models working on multi- and hyper- spectral views of this
data

e The Goal: Reliable methane detection on-board of
satellites using sensors with mixed capabilities
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Can we detect methane on-board satellites?
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Figure taken from Sanchez-Garcia et al 2021: Mapping methane plumes at very high spatial resolution with the WorldView-3
satellite. Atmospheric Measurement Techniques Discussions 1-26. https://doi.org/10.5194/amt-2021-238
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https://doi.org/10.5194/amt-2021-238

Detection limits (best cases) * Best cases, no systematic
study of detection

o * Mostly manual
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[Jacob 2022] Quantifying methane emissions from the global scale down to
point sources using satellite observations of atmospheric methane
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Baseline methods for hyperspectral data
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Matched Filter approaches
(example: mag1c) can be
automated, but produce
many false positives

Processing large
hyperspectral datasets is
slow
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Known sources of false positives:

[M. D. Foote 2020] Fast and Accurate Retrieval of Methane
Concentration From Imaging Spectrometer Data Using Sparsity Prior
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o
Baseline methods for multispectral data
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* Typically using image differencing or
h ratios between two channels (band
» inside and outside methane signature)
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o
Baseline methods for multispectral data
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° * Typically using image differencing or
h ratios between two channels (band
» inside and outside methane signature)
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Varon ¢ x signal — bg
bg + ¢ ¢ ~ matched
Sanchez- From non-methane bands
Garcia estimate the target methane band

with multiple linear regression

[D.J. Varon et al., 2021] High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations
[Elena Sanchez-Garcia et al. 2022] Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
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o
Baseline methods for multispectral data

B5B6 B7 B8

* Typically using image differencing or
h ratios between two channels (band
inside and outside methane signature)

16\/\32ve|eng%§?gm) 2000 2200 2400
cxsignal — b
Varon 9 g Example with WorldView3 bands:
bg + € ¢ ~ matched B, < Bs
Sanchez- From non-methane bands .
Garcia estimate the target methane band Bg'=MLR(B;.6, Bs)

with multiple linear regression Bg < By’

[D.J. Varon et al., 2021] High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations
[Elena Sanchez-Garcia et al. 2022] Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
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Detection capabilities using different sensors

Hyperspectral data: Multispectral data:

Showing a very
strong plume
example!

Matched filter approach
(mag1c, uses bands
between 2122-2488nm)

Simulated WorldView3 Simulated Sentinel-2
SWIR bands B7 <> B5 bands B12 <> B11

> Baseline approach: thresholding of the extracted feature map



L
Releasing: ML-Ready STARCOP Dataset

 Based on the AVIRIS aerial data
collected in the Permian Basin area

* Large unwieldy dataset: 4.47 TB

* [nitial annotation available from
[Cusworth 2021]

[D.H. Cusworth 2021] Intermittency of Large Methane Emitters in the Permian Basin
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Releasing: ML-Ready STARCOP Dataset

Augmented with:

\ \\\.ﬁ r { * Refined ground truth annotations
S S o  Predictions of other methods (mag1c)
« Based on the AVIRIS aerial data Simulation of multi-spectral data:
collected in the Permian Basin area * Existing: Sentinel-2 and WorldView3
« Large unwieldy dataset: 4.47 TB * Future satelll’Fes:. | ]
« Initial annotation available from * Exploration: which bands to add*

[Cusworth 2021] .
Split into easy/hard plumes

[D.H. Cusworth 2021] Intermittency of Large Methane Emitters in the Permian Basin
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Training dataset From 1712 tiles with plumes and 1713 tiles without Tile =
) . 512x512 px
plumes, augmented with rotations, crops, ...

Test dataset Ratios using simulated WV3 bands

(Varon and Sanchez)
%

RGB GT magic

Easy

gplume
> 1000

166
plumes

Hard

gplume
< 1000

176 No-plume From known confounders and random no-plume locations.



HyperSTARCOP model

featu_re Prediction
extraction:

Matched
Filter
(mag1c)

prediction

Selected
bands
(RGB)

128

128

* To reduce the false
positive detections
in the predictions

* We use the output of mag1c with
selected bands from the original
hyperspectral sensor (RGB)
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MultiSTARCOP model

featu_re Prediction
extraction:

prediction

Selected
ratios

128

* To achieve automated methane

plume detection
(current methods were manual)

* We test different ratio products used
with multispectral data (Varon and/or
Sanchez with different source bands)
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Prediction

example:




Baseline

prediction

example:

magic + rgb

Baseline

Multlspectral input:

ratios




Results F1 score shown in percentage (averaged over 3 runs) segmentation
for legibility +std shown only for hyperspectral classification

Hyperspectral (AVIRIS) F1 (easy) F1 (hard) FPR Captured plumes

Baseline, mag1c + morpho. 67.4 39.9 75.4 96.4

HyperSTARCOP 83.6%1.5 39.8+1.9 45.7£5.4 91.0+2.6

Multispectral (WV3) F1 (easy) F1 (hard) FPR Captured plumes

Baseline, ratios + morpho. 74 0.5 100.0 100.0

Our (Varon) 32.3 10.6 85.9 63.6

Our (Sanchez) 24.9 11.5 68.5 35.0

Our (Varon+Sanchez) 30.5 9.5 67.8 37.3

e Our proposed methods outperform the baselines in both scenarios.



Results F1 score shown in percentage (averaged over 3 runs) segmentation
for legibility +std shown only for hyperspectral classification

Hyperspectral (AVIRIS) F1 (easy) F1 (hard) FPR Captured plumes

Baseline, mag1c + morpho. 67.4 +24% 39.9 754 > -39% 96.4 - 5%

HyperSTARCOP 83.6%1.5 > 39.8%1.9 45.715.4 91.0£2.6 D

Multispectral (WV3) F1 (easy) F1 (hard) FPR Captured plumes

Baseline, ratios + morpho. 7.4 0.5 100.0 100.0

Our (Varon) 32.3 > 10.6 > 85.9 > 63.6

Our (Sanchez) 24.9 11.5 68.5 35.0

Our (Varon+Sanchez) 30.5 9.5 67.8 37.3

e Our proposed methods outperform the baselines in both scenarios.



Results
by plume size
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Results
by plume size .
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e While maintaining the same performance for larger plumes (> 200), our
hyperspectral method achieves 32% drop of FPR on no-plume data.
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Res u Its “Hard” “Easy”
by plume size -

metric

—&— UNet maglc+RGB
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—8— maglc

® Plumes captured
B Average precision
Vv False Positive Rate

no-plume 10-200 200-500 500-1000 1000-3000 3000+
Plume size kg/h

e While maintaining the same performance for larger plumes (> 200), our
hyperspectral method achieves 32% drop of FPR on no-plume data.

e We introduce automated multispectral models which are capable of
detection of >70% of very large plumes and >50% or large plumes.



STARCOP
Automated and self-improving follow-up verification of C» ;: ﬁﬁ
detrimental human-activity from LEO.

NG, T UNIBAP

RAPID
RESPONSE

99.3% CONFIDENCE

ACTIVE LEARNING LOOP

‘Tip-off” signal Follow up with (1] third party verification Insight, returned rapidly to the ground.



Conclusions:

e STARCOP models: U-Net based model for
plume detection

e Hyperspectral model reduces the FPR of
the baseline by 39% while maintaining its
performance on most plumes

e Automated multispectral model capable
of detecting 50% of large and 70% of
very large plumes

o Dataset: release of challenging ML-ready

dataset testbed for plume detection
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STARCOP: ML models for on-board detection of methane

leaks in multispectral and hyperspectral sensors
ECMWF-ESA workshop 2022

Vit Rizi¢ka, Gonzalo Mateo-Garcia, Anna Vaughan,
Luis Gomez-Chova, Luis Guanter

Thank you for your attention!
Any questions?
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