Extended Elman Network for Bayesian Data Assimilation

Sixin Zhang Université de Toulouse, INP, IRIT

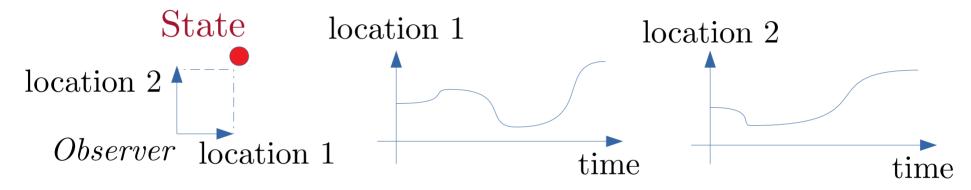
Joint work with P. Boudier, A. Fillion, S. Gratton, S. Gurol

Outline

- Data assimilation of chaotic dynamical systems
- State-of-the art methods
- Main contribution: Data assimilation networks (DAN)
- Conclusion and perspectives

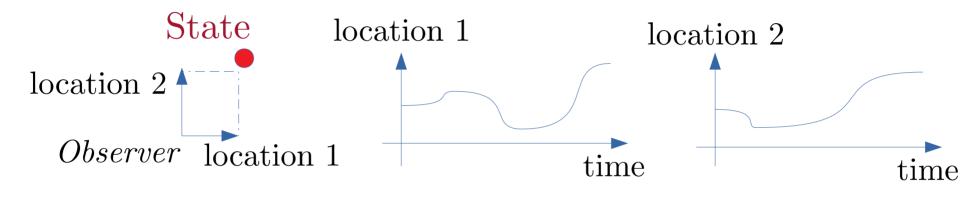
Chaotic dynamical system

• A (dynamical) system describes the change of state variables

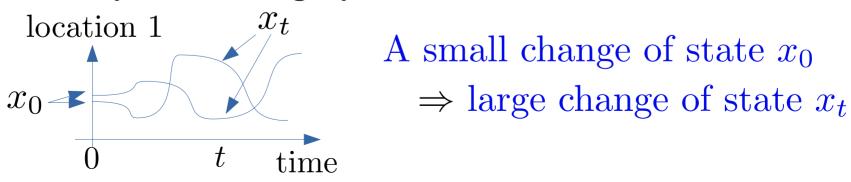


Chaotic dynamical system

• A (dynamical) system describes the change of state variables



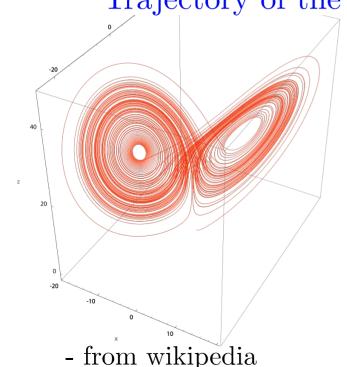
• A chaotic system is highly sensitive to initial conditions



Lorenz chaotic system

• Lorenz proposes in 1963 a chaotic system model in 3d

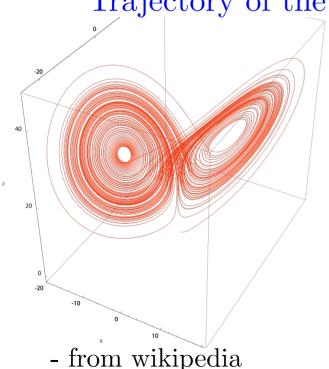
Trajectory of the states over time (3 state variables)



Lorenz chaotic system

• Lorenz proposes in 1963 a chaotic system model in 3d

Trajectory of the states over time (3 state variables)

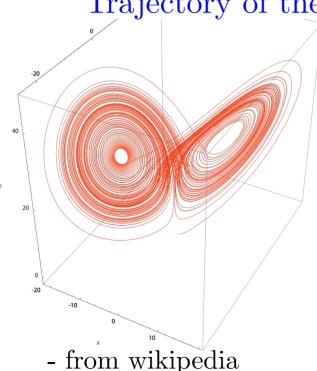


- Extensible to more than 3d "Predictability: A problem partly solved" -Lorenz, 1995

Lorenz chaotic system

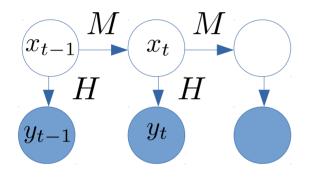
• Lorenz proposes in 1963 a chaotic system model in 3d

Trajectory of the states over time (3 state variables)



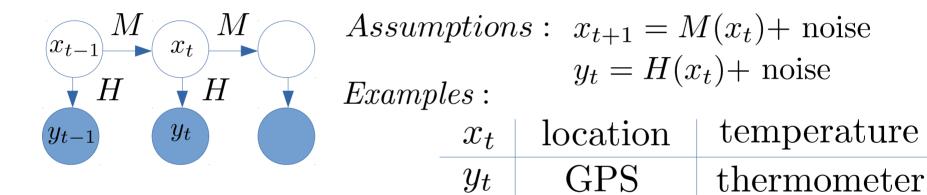
- Extensible to more than 3d "Predictability: A problem partly solved" -Lorenz, 1995
- A toy model in Atmospheric/Ocean science
- In practice, consider high dimension systems (beyond Lorenz with more than 10⁷ variables)

• Forcast the state x_{t+1} from noisy observations y_1, \dots, y_t

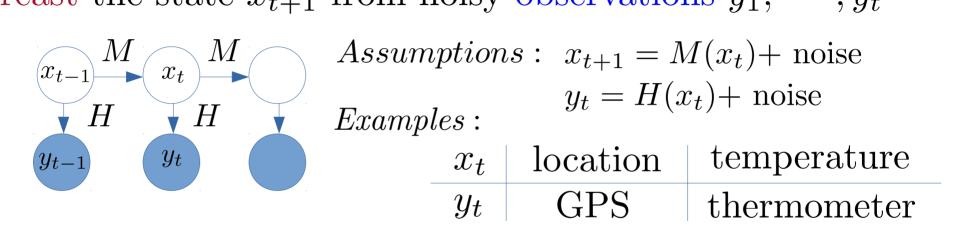


Assumptions: $x_{t+1} = M(x_t) + \text{noise}$ $y_t = H(x_t) + \text{noise}$

• Forcast the state x_{t+1} from noisy observations y_1, \dots, y_t

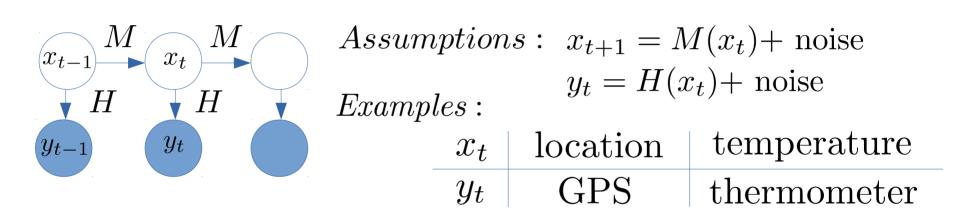


• Forcast the state x_{t+1} from noisy observations y_1, \dots, y_t



• In a chaotic system M, we estimate the probability of states

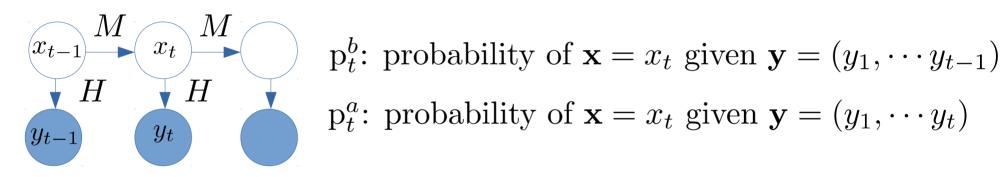
• Forcast the state x_{t+1} from noisy observations y_1, \dots, y_t



- In a chaotic system M, we estimate the probability of states
- An inference problem of latent models in Machine learning

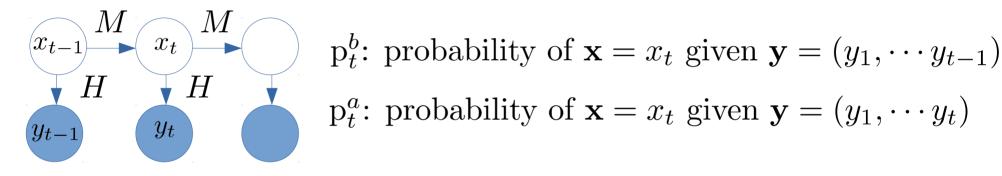
Inference in latent models

ullet Predict the state variable ${f x}$ given the observed variable ${f y}$

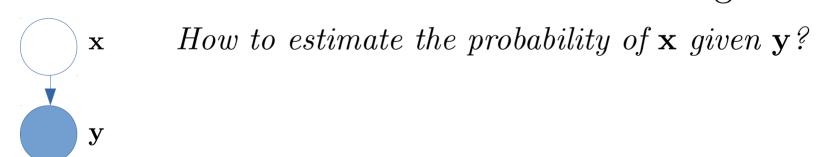


Inference in latent models

ullet Predict the state variable ${f x}$ given the observed variable ${f y}$

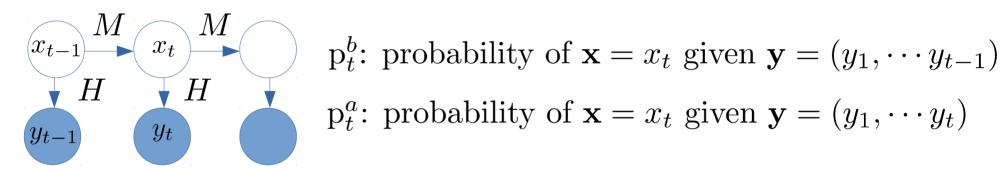


• Two common frameworks in Machine learning

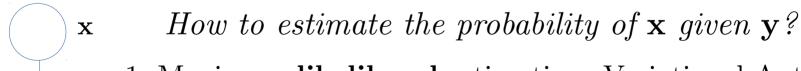


Inference in latent models

ullet Predict the state variable ${f x}$ given the observed variable ${f y}$



• Two common frameworks in Machine learning



- 1. Maximum **likelihood** estimation: Variational Auto-encorder
- 2. Likelihood-free estimation: Generative adversarial network

Key problem of Data assimilation

• How can we compute these probabilities for $t = 1, 2, \dots$?

 p_t^b : probability of x_t given (y_1, \dots, y_{t-1})

 p_t^a : probability of x_t given (y_1, \dots, y_t)

• Ideal solution based on a recurrent Bayesian rule

$$\begin{bmatrix} \mathbf{p}_t^b & \mathbf{p}_t^a & \mathbf{p}_{t+1}^b \\ y_t & \end{bmatrix}$$

$$p_t^b - p_t^a - p_{t+1}^b$$

$$p_t^b - p_{t+1}^a - p_{t+1}^b$$

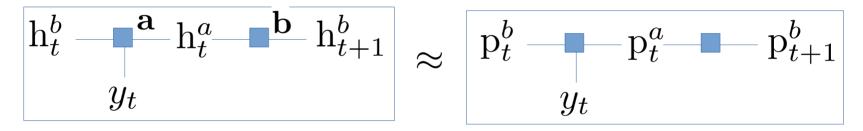
$$p_{t+1}^b(x_{t+1}) = \int p(x_{t+1}|x_t) p_t^b(x_t)$$

$$p_{t+1}^b(x_{t+1}) = \int p(x_{t+1}|x_t) p_t^a(x_t|y_t) dx_t$$

Time-invariant, but intractable transform

State-of-the art methods

- Recurrence in Ensemble Kalman Filter methods
 - Use h_t^a, h_t^b to estimate the moments of p_t^a, p_t^b (mean/covariance)



- **Key**: derive update rules for **a** and **b** under limited ensemble size $ensemble \ size = dimension \ of \ ensemble \ h_t^a, \ h_t^b$
- Performance sensitive to the choice of the ensemble size
- Introduce localization and inflation regularisation techniques (reduce the sampling noise)

State-of-the art methods

- Machine learning methods fall roughly into 3 settings
 - Supervised: Use (x_t, y_t) to estimate p_t^a, p_t^b Fablet et al. (2021): state information (mode)

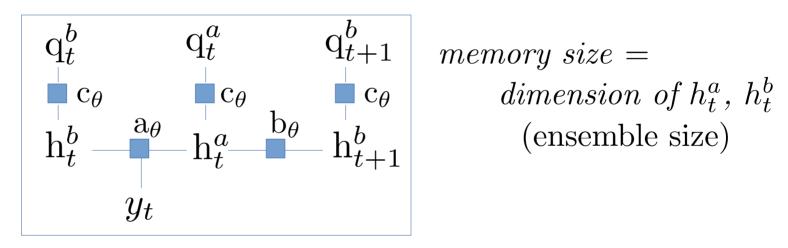
 Revach et al. (2022): mean/covariance
 - Self-supervised: Use y_t and M to estimate p_t^a, p_t^b (moments)

 Harter and de Campos Velho (2012), McCabe and Brown (2021)
 - Unsupervised: Use y_t to learn M (and estimate modes of p_t^a, p_t^b)

 Bocquet et al. (2019,2020), Brajard et al. (2020)

Data Assimilation Networks

Idea: learn $(a_{\theta}, b_{\theta}, c_{\theta})$ to generate $(q_{t,\theta}^b, q_{t,\theta}^a) \approx (p_t^b, p_t^a)$

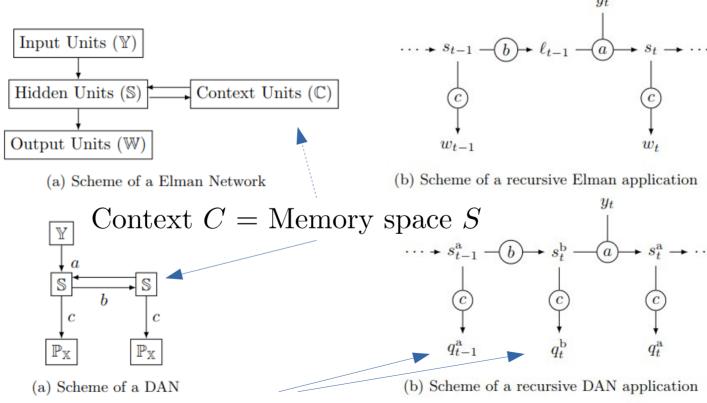


- Parameterize $(a_{\theta}, b_{\theta}, c_{\theta})$ with θ using Recurrent Neural networks
- Objective function: $\min_{\theta} L(\theta) = \mathbb{E}\left(\frac{1}{T}\sum_{t=1}^{T} KL(q_{t,\theta}^{a}|p_{t}^{a}) + KL(q_{t,\theta}^{b}|p_{t}^{b})\right)$
- A general framework with no Gaussian assumptions on $q_{t,\theta}^a, q_{t,\theta}^b$

DAN as Extended Elman Network

Elman Network

DAN



Two outputs instead of one at each time

Main results

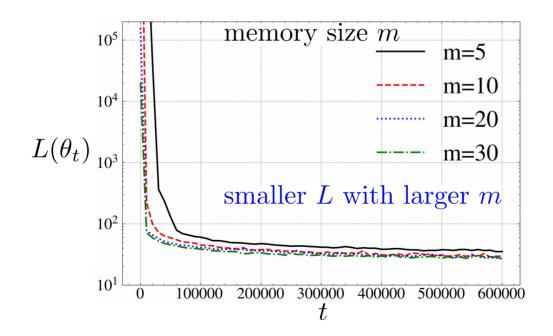
• Question: What happens to the case $q_{t,\theta}^b, q_{t,\theta}^a$ are Gaussian distributions?

Informal Theorem: Assume $q_{t,\theta}^a := \mathcal{N}(\mu_{t,\theta}^a, \Sigma_{t,\theta}^a)$ and $q_{t,\theta}^b := \mathcal{N}(\mu_{t,\theta}^b, \Sigma_{t,\theta}^b)$, then with infinite memory size the optimal θ^* of the objective $L(\theta)$ satisfies μ_{t,θ^*}^a is the mean of p_t^a , μ_{t,θ^*}^b is the mean of p_t^b Σ_{t,θ^*}^a is the covariance of p_t^a , Σ_{t,θ^*}^b is the covariance of p_t^b

- Optimal matching of mean and covariance matrices
 - ⇒ Potential to capture complex chaotic dynamics
- This includes Kalman filter as a special linear case
- What happens with finite memory size?

Performance of DAN on Lorenz 95

- Train DAN on 1000 trajectories $\{x_t, y_t\}_{t \leq T}$ with 40 state variables
- Minimization of $L(\theta_t)$ by truncated gradients for $T = 6 \times 10^5$



Performance of DAN on Lorenz 95

• Given one trajectory $\{x_t, y_t\}_{t \leq T}$, compute the mean μ_t^a of q_{t,θ_T}^a and the mean μ_t^b of q_{t,θ_T}^b from y_1, \dots, y_t , for $t \leq T$

Accuracy of the mean w.r.t memory size m

$$\frac{1}{T} \sum_{t=1}^{T} \|\mu_t^a - x_t\|$$

m	5	10	20	30
DAN	0.401	0.388	0.376	0.376
IEnKF-Q	3.939	2.798	0.413	0.355
LETKF	0.4647	0.3629	0.3460	0.3424
LETKF*	0.4092	0.3610	0.3460	0.3418

1	$\sum_{t=0}^{T} \ \mu_t^b - a\ $	$c_t \ $
T	$\sum_{t=1}^{ \mu_t } \mu_t $	√t

m	5	10	20	30
DAN	0.453	0.436	0.423	0.423
IEnKF-Q	4.021	2.920	0.460	0.399
LETKF	0.5171	0.4075	0.3890	0.3851
LETKF*	0.4565	0.4047	0.3890	0.3846

- DAN, IEnKF-Q, LETKF: tuned on m = 20. LETKF*: tuned on each m.

When m < d = 40, accuracy of DAN is comparable to ETKF methods

 \Rightarrow Replace tuning inflation/localization across m by learning

Stability analysis

• How sensitive is the performance w.r.t to the range of t?

$$\frac{1}{T} \sum_{t=1}^{T} \|\mu_t^a - x_t\| = \begin{bmatrix}
\frac{\text{m}}{\text{DAN}} & |5| & |10| & |20| & |30| \\
\frac{\text{DAN}}{\text{DAN}} & |\mathbf{0.401}| & \mathbf{0.388} & |\mathbf{0.376}| & |0.376| \\
\frac{1}{\text{EnKF-Q}} & |3.939| & |2.798| & |0.413| & |0.355|
\end{bmatrix}$$

$$\frac{1}{T} \sum_{t=T+1}^{2T} \|\mu_t^a - x_t\| = \begin{bmatrix}
\frac{\text{m}}{\text{DAN}} & |5| & |10| & |20| & |30| \\
\frac{\text{DAN}}{\text{DAN}} & |0.400| & |0.388| & |0.377| & |0.376| \\
\frac{\text{DAN}}{\text{DAN}} & ||0.400| & ||0.388| & ||0.377| & ||0.376| & ||0.$$

 $2.785 \mid 0.412 \mid 0.356$

3.941

• How sensitive is the performance w.r.t to x_0 ?

$$\frac{1}{T} \sum_{t=1}^{T} \|\mu_t^a - x_t\| \frac{\left| \text{burning time } \right| \ 10^1 \ | \ 10^3 \ | \ 10^5 \ | \ 10^7 \ |}{\left| \text{DAN} \ | \ 0.376 \ | \ 0.377 \ | \ 0.377 \ |} \frac{\left| \text{Similar accuracy}}{\left| \text{IEnKF-Q} \ | \ 0.414 \ | \ 0.413 \ | \ 0.414 \ | \ 0.413 \ |} \right|$$

Conclusions and perspectives

- ETKF methods with Gaussian assumps are sub-optimal.
- DAN can in theory achieve optimal estimations of state probabilities by optimizing likelihood-based objective function.
- Numerically DAN, when trained with Gaussian pdfs, can achieve comparable performance to ETKFs on Lorenz-95, without inflation/localization tuning across memory size.
- Future: extension of DAN to non-Gaussian pdfs, and to self-supervised/unsupervised learning setups.