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Machine learning

Learning data-driven models from dense and perfect observations

» A typical (supervised) machine learning problem: given observations y}, of a system, derive a surrogate
model of that system from the loss function:
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» The surrogate model to be learned M depends on a set of coefficients p (e.g., the weights and biases of a
neural network).
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» This requires dense and perfect observations of the system.

» In the goesciences, observations are usually sparse and noisy: we need data assimilation!
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

» A rigorous Bayesian formalism for this problem:!

J(p;x0:x) = — In p(p, X0:x|yo0: )
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» This resembles a typical weak-constraint 4D-Var cost function!

» Machine learning limit
If the physical system is fully and directly observed, i.e. Hy = I, and if the observation errors tend to zero,

i.,e. R — 0, then the observation term in the cost function is completely frozen and imposes that x; ~ yx,
so that, in this limit, 7 (p, X0:x ) becomes
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1[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

» We need to minimise this cost function on both states and parameters:

J(x0:x,P) = — In p(x%0: K, P|yo: k)
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—Inp(p) — Inp(xo).

» DA is used to estimate the state and then VL is used to estimate the model (coordinate descent):

p
Initialisation Po DA step X550 ML step (o* x5 1)
q P, X,
choose pg estimate x§, update p oK
Yo:K

DA: 4D-Var, WC 4D-Var, EnKS, IEnKS, etc. and ML: Neural network.

» This DA standpoint is remarkable as it allows for noisy and partial observations of the physical system.
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

» Focusing on the marginal p(p, Q1:x |yo:kx, Ro:k):

(P, Quk|yo:x; Ro:x) = /dXO:K p(P, Q1:K, X0:K|Y0: K, Ro: k),

yields the loss function:

J(psx0:x,Q1:x) = — In p(p, X0:x, Qu:x|yo:x, Ro: k)
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» This problem can (almost) fully be solved from a Bayesian standpoint using the empirical
Expectation-Maximisation algorithm with an ensemble smoother?.
— Very successful on low-order models®, but it has a significant numerical cost.

2[Ghahramani et al. 1999; Nguyen et al. 2019; Bocquet et al. 2020]
3[Bocquet et al. 2020]
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Offline learning

model correction

» Partial and noisy observations of a physical model with a proxy of the dynamics o:

» ®n(p)
Initialisation @@ n(po) DA step X5k ML step (%3 )
» X0,
©,P0 estimate x§ update p P *ox
Yo:x

where the hybrid physical/statistical model is a combination of the proxy ¢-model and a NN model:

Physical model ¢

model 7(p)

» Fully observed system whose dynamics are unknown:

a

Xo0: 10
Initialisation Yo:K ML step n(p) DA step
. (P*,%5.x)
dataset yo.x update p estimate X3, - :
n(po)
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Offline learning

Loop order

» Loop order—1/2: This is traditional DA. The output is the analysed trajectory x§. ;- over the DA window. In
an incremental operational setup, the usable output are the analysis increments x, — x,

— X0k ]y
» Loop order—1: The analysed trajectory/analysis increments are used to train a DL model 7, possibly with the
help of a known physical model .

— e Dm
» Loop order-3/2: Within an hybrid model configuration the DL correction to the model can be used to carry

out a re-analysis with the observations yo.x. We implemented this in several configurations from low-order
model to realistic models (within OOPS).

- [x3;K]2

» Loop order-2: Using these new analysis increments, we can re-train the DL model to obtain an improved
model correction. We showed this to be efficient on low-order model but not yet on more realistic, possibly
already well-estimated, fields such as ERA-5 dataset.

— e dn2

» Loop order-5/2,
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Offline learning

Example of loop order-1 and 3/2

» Learning a purely data-driven meteorological model from ERA-5 reanalysis
» True model: A selection of ERA-5 fields in 1979-2018 at 0.5625° .*
» DL model: Residual NN at the same resolution.

» Forecast skill score of the geopotential at 500hPa as a function of the forecast lead time.%
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» 7 has also successfully been tested with DA, hence at loop order—3/2.

#[Rasp et al. 2020]
5[Bocquet et al. 2022]
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Offline learning

Example of loop order—1 and 3/2, with an hybrid model

» Marshall-Molteni® 3-layer intermediate QG model: Learning subgrid scale parametrisation at /oop order—1 to
perform more accurate forecasts at low resolution (LR) from high resolution simulations (HR).”

Time Truth pur wih R Error YLR , NHR—LR
t=0

t = 24h

t = 48h

t = T72h

» pLr ® MR LR has also successfully been tested with DA, hence at /loop order—3/2.

6 [Marshall et al. 1993]
7[Malartic et al. 2022b]
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Online learning

model error correction

» So far, the model error has been learned offline: a long analysis trajectory is required.

» We now investigate the possibility to perform online learning, i.e. improving the correction as
new observations become available.

» To do this, we use the formalism of DA to estimate both the state and the NN parameters:®

K
T(p,x) = % HX_XbHZ . % Hp B pripil + % Z llyw — Ha OMk(an)”2R;1 .
k=0

» Potential cross-covariance between state and NN parameters are neglected in the prior.

8[Farchi et al. 2021; Bocquet et al. 2022]
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Online learning

model error correction

» Sequential DA, yet another approximate solution to the original Bayesian problem:

Initialisation X0 DA+ML % ®n(p)[xi; ] DA+ML @ n(p)[xiy] DA+ML ..
— (P" X{x)
©,%0,P0 @ n(po) update Xr,, P wan(p) update Xr,,p p@n(p) update X7,,p
Yy Yiy Yis

» Information is flowing from one window to the next using the prior for the state x? and for the
NN parameters p®.

» Already been investigated with an EnKF, with promising solutions but limitations as well.®

9[Bocquet et al. 2021; Malartic et al. 2022a]
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Online learning

Numerical illustration with the two-scale Lo

» We use the tendency correction approach, with the same simple CNN as before, and still using 4D-Var.'©
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» The online correction steadily improves the model.
» At some point, the online correction gets more accurate than the offline correction.

» Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!

10 (Farchi et al. 2021]
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Conclusions

Conclusions

» Main messages:

o Bayesian DA view on joint state and model estimation.
DA can address goals assigned to VIL but with partial & noisy observations.

Offline or online optimisation strategies.
lLoop order- N correction successful on 1D models (L96, LO5III, L96i, mL96).

» In progress: more ambitious models and datasets at higher loop order
o Application to the Marshall-Molteni 3-layer QG model on the sphere [order—3/2]
o Application to the ERA5 and CMIP data (WeatherBench!!-like challenge) [order—2]

o Application to the ECMWF IFS [order—3/2]'?
— Alban Farchi’s talk and Marcin Chrust’s poster

Application to sea-ice surrogate modelling [order—1/2 & order—1]: Schmidt
Futures/VESRI/SASIP project
—— Tobias Finn's and Simon Driscoll’s posters

M [Rasp et al. 2020]
12 [Farchi et al. 2022]
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