Beyond one iteration of machine learning and data assimilation steps for learning meteorological models?

Marc Bocquet[†], Alban Farchi[†], Quentin Malartic[†], Massimo Bonavita[‡], Patrick Laloyaux[‡], Marcin Chrust[‡], Tobias Finn[†], Charlotte Durand[†], and *last but not least* Fabio d'Andrea, Julien Brajard, Alberto Carrassi, Laurent Bertino.

[†]CEREA, École des Ponts and EDF R&D, Île-De-France, France [‡]ECMWF, Reading, United Kingdom.

Learning data-driven models from dense and perfect observations

A typical (supervised) machine learning problem: given observations y_k of a system, derive a *surrogate model* of that system from the loss function:

$$\mathcal{J}(\mathbf{p}) = \sum_{k=1}^{K} \left\| \mathbf{x}_{k} - M_{k} \left(\mathbf{p}, \mathbf{x}_{k-1} \right) \right\|^{2}$$

The surrogate model to be learned \mathcal{M} depends on a set of coefficients p (e.g., the weights and biases of a neural network).

▶ This requires dense and perfect observations of the system.

▶ In the goesciences, observations are usually sparse and noisy: we need data assimilation!

Machine learning for the geosciences with sparse and noisy observations

► A rigorous Bayesian formalism for this problem:¹

$$\begin{aligned} \mathcal{J}(\mathbf{p}, \mathbf{x}_{0:K}) &= -\ln p(\mathbf{p}, \mathbf{x}_{0:K} | \mathbf{y}_{0:K}) \\ &= \frac{1}{2} \sum_{k=0}^{K} \| \mathbf{y}_{k} - H_{k}(\mathbf{x}_{k}) \|_{\mathbf{R}_{k}^{-1}}^{2} + \frac{1}{2} \sum_{k=1}^{K} \| \mathbf{x}_{k} - M_{k}(\mathbf{p}, \mathbf{x}_{k-1}) \|_{\mathbf{Q}_{k}^{-1}}^{2} \\ &- \ln p(\mathbf{x}_{0}, \mathbf{p}) + \text{Cst} \end{aligned}$$

▶ This resembles a typical weak-constraint 4D-Var cost function!

Machine learning limit

If the physical system is fully and directly observed, i.e. $\mathbf{H}_k \equiv \mathbf{I}$, and if the observation errors tend to zero, i.e. $\mathbf{R}_k \to \mathbf{0}$, then the observation term in the cost function is completely frozen and imposes that $\mathbf{x}_k \simeq \mathbf{y}_k$, so that, in this limit, $\mathcal{J}(\mathbf{p}, \mathbf{x}_{0:K})$ becomes

$$\mathcal{J}(\mathbf{p}) = \frac{1}{2} \sum_{k=0}^{K} \|\mathbf{y}_{k} - M_{k}(\mathbf{p}, \mathbf{y}_{k-1})\|_{\mathbf{Q}_{k}^{-1}}^{2} - \ln p(\mathbf{p}).$$

ECMWF-ESA workshop, 13-17 November 2022, Reading, UK

¹[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]

Machine learning for the geosciences with sparse and noisy observations

▶ We need to minimise this cost function on both states and parameters:

$$\begin{aligned} \mathcal{J}(\mathbf{x}_{0:K},\mathbf{p}) &= -\ln p(\mathbf{x}_{0:K},\mathbf{p}|\mathbf{y}_{0:K}) \\ &= \frac{1}{2} \sum_{k=0}^{K} \|\mathbf{y}_{k} - H_{k}(\mathbf{x}_{k})\|_{\mathbf{R}_{k}^{-1}}^{2} + \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{x}_{k} - M_{k}(\mathbf{p},\mathbf{x}_{k-1})\|_{\mathbf{Q}_{k}^{-1}}^{2} \\ &- \ln p(\mathbf{p}) - \ln p(\mathbf{x}_{0}). \end{aligned}$$

▶ DA is used to estimate the state and then ML is used to estimate the model (coordinate descent):

DA: 4D-Var, WC 4D-Var, EnKS, IEnKS, etc. and ML: Neural network.

▶ This DA standpoint is remarkable as it allows for noisy and partial observations of the physical system.

Machine learning for the geosciences with sparse and noisy observations

Focusing on the marginal $p(\mathbf{p}, \mathbf{Q}_{1:K} | \mathbf{y}_{0:K}, \mathbf{R}_{0:K})$:

$$p(\mathbf{p}, \mathbf{Q}_{1:K} | \mathbf{y}_{0:K}, \mathbf{R}_{0:K}) = \int d\mathbf{x}_{0:K} \, p(\mathbf{p}, \mathbf{Q}_{1:K}, \mathbf{x}_{0:K} | \mathbf{y}_{0:K}, \mathbf{R}_{0:K}),$$

yields the loss function:

$$\begin{aligned} \mathcal{J}(\mathbf{p}, \mathbf{x}_{0:K}, \mathbf{Q}_{1:K}) &= -\ln p(\mathbf{p}, \mathbf{x}_{0:K}, \mathbf{Q}_{1:K} | \mathbf{y}_{0:K}, \mathbf{R}_{0:K}) \\ &= \frac{1}{2} \sum_{k=0}^{K} \left\{ \left\| \mathbf{y}_{k} - H_{k}(\mathbf{x}_{k}) \right\|_{\mathbf{R}_{k}^{-1}}^{2} + \ln |\mathbf{R}_{k}| \right\} \\ &+ \frac{1}{2} \sum_{k=1}^{K} \left\{ \left\| \mathbf{x}_{k} - M_{k}(\mathbf{p}, \mathbf{x}_{k-1}) \right\|_{\mathbf{Q}_{k}^{-1}}^{2} + \ln |\mathbf{Q}_{k}| \right\} - \ln p(\mathbf{x}_{0}, \mathbf{p}, \mathbf{Q}_{1:K}). \end{aligned}$$

▶ This problem can (almost) fully be solved from a Bayesian standpoint using the empirical Expectation-Maximisation algorithm with an ensemble smoother².

 $\xrightarrow{}$ Very successful on low-order models³, but it has a significant numerical cost.

²[Ghahramani et al. 1999; Nguyen et al. 2019; Bocquet et al. 2020]

³[Bocquet et al. 2020]

Offline learning

Offline model correction

▶ Partial and noisy observations of a physical model with a proxy of the dynamics φ :

where the *hybrid* physical/statistical model is a combination of the proxy φ -model and a NN model:

▶ Fully observed system whose dynamics are unknown:

Loop order

▶ Loop order-1/2: This is traditional DA. The output is the analysed trajectory $\mathbf{x}_{0:K}^{a}$ over the DA window. In an incremental operational setup, the usable output are the analysis increments $\mathbf{x}_{k}^{a} - \mathbf{x}_{k}^{f}$.

$$\rightarrow [\mathbf{x}_{0:K}^{a}]_{1}$$

▶ Loop order-1: The analysed trajectory/analysis increments are used to train a DL model η , possibly with the help of a known physical model φ .

 $\longrightarrow \varphi \oplus \eta_1$

▶ Loop order-3/2: Within an hybrid model configuration the DL correction to the model can be used to carry out a re-analysis with the observations $\mathbf{y}_{0:K}$. We implemented this in several configurations from low-order model to realistic models (within OOPS).

$$\rightarrow [\mathbf{x}_{0:K}^{a}]_{2}$$

► Loop order-2: Using these new analysis increments, we can re-train the DL model to obtain an improved model correction. We showed this to be efficient on low-order model but not yet on more realistic, possibly already well-estimated, fields such as ERA-5 dataset.

 $\longrightarrow \varphi \oplus \eta_2$

 \blacktriangleright Loop order-5/2,

Offline learnin

Example of loop order-1 and 3/2

▶ Learning a purely data-driven meteorological model from ERA-5 reanalysis

- ▶ True model: A selection of ERA-5 fields in 1979-2018 at 0.5625°.4
- DL model: Residual NN at the same resolution.
- ▶ Forecast skill score of the geopotential at 500hPa as a function of the forecast lead time.⁵

 $\triangleright \eta$ has also successfully been tested with DA, hence at *loop order*-3/2.

⁴[Rasp et al. 2020]

```
<sup>5</sup>[Bocquet et al. 2022]
```

Example of loop order-1 and 3/2, with an hybrid model

▶ Marshall-Molteni⁶ 3-layer intermediate QG model: Learning subgrid scale parametrisation at *loop order*-1 to perform more accurate forecasts at low resolution (LR) from high resolution simulations (HR).⁷

▶ $\varphi_{LR} \oplus \eta_{HR \to LR}$ has also successfully been tested with DA, hence at *loop order*-3/2.

⁶[Marshall et al. 1993]

⁷[Malartic et al. 2022b]

So far, the model error has been learned *offline*: a long analysis trajectory is required.

▶ We now investigate the possibility to perform *online* learning, *i.e.* improving the correction as new observations become available.

▶ To do this, we use the formalism of DA to estimate both the state and the NN parameters:⁸

$$\mathcal{J}(\mathbf{p}, \mathbf{x}) = \frac{1}{2} \left\| \mathbf{x} - \mathbf{x}^{\mathrm{b}} \right\|^{2} + \frac{1}{2} \left\| \mathbf{p} - \mathbf{p}^{\mathrm{b}} \right\|_{\mathbf{B}_{\mathrm{p}}-1}^{2} + \frac{1}{2} \sum_{k=0}^{K} \left\| \mathbf{y}_{k} - \mathcal{H}_{k} \circ \mathcal{M}_{k}(\mathbf{p}, \mathbf{x}) \right\|_{\mathbf{R}_{k}^{-1}}^{2}.$$

▶ Potential cross-covariance between state and NN parameters are neglected in the prior.

⁸[Farchi et al. 2021; Bocquet et al. 2022]

▶ Sequential DA, yet another approximate solution to the original Bayesian problem:

 \blacktriangleright Information is flowing from one window to the next using the prior for the state \mathbf{x}^b and for the NN parameters $\mathbf{p}^b.$

Already been investigated with an EnKF, with promising solutions but limitations as well.⁹

⁹[Bocquet et al. 2021; Malartic et al. 2022a]

Numerical illustration with the two-scale Lorenz model

▶ We use the tendency correction approach, with the same simple CNN as before, and still using 4D-Var.¹⁰

- The online correction steadily improves the model.
- ▶ At some point, the online correction gets more accurate than the offline correction.
- > Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!

¹⁰[Farchi et al. 2021]

- Main messages:
 - Bayesian DA view on joint state and model estimation.
 DA can address goals assigned to ML but with partial & noisy observations.
 - Offline or online optimisation strategies.
 - Loop order-N correction successful on 1D models (L96, L05III, L96i, mL96).

▶ In progress: more ambitious models and datasets at higher loop order

- Application to the Marshall-Molteni 3-layer QG model on the sphere [order-3/2]
- Application to the ERA5 and CMIP data (WeatherBench¹¹-like challenge) [order-2]
- Application to the ECMWF IFS [order-3/2]¹²

 \longrightarrow Alban Farchi's talk and Marcin Chrust's poster

 \bullet Application to sea-ice surrogate modelling [order–1/2 & order–1]: Schmidt Futures/VESRI/SASIP project

 \longrightarrow Tobias Finn's and Simon Driscoll's posters

¹¹[Rasp et al. 2020]

¹²[Farchi et al. 2022]

References

References

- H. D. I. Abarbanel, P. J. Rozdeba, and S. Shirman. "Machine Learning: Deepest Learning as Statistical Data Assimilation Problems". In: Neural Computation 30 (2018), pp. 2025–2055.
- M. Bocquet, A. Farchi, and Q. Malartic. "Online learning of both state and dynamics using ensemble Kalman filters". In: Foundations of Data Science 3 (2021), pp. 305–330.
- [3] M. Bocquet et al. "Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization". In: Foundations of Data Science 2 (2020), pp. 55–80.
- M. Bocquet et al. "Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models". In: Nonlin. Processes Geophys. 26 (2019), pp. 143–162.
- [5] M. Bocquet et al. "Higher-order correction to deep-learning surrogate model of meteorology from data assimilation". In: In preparation (2022).
- [6] J. Brajard et al. "Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model". In: J. Comput. Sci. 44 (2020), p. 101171.
- [7] A. Farchi et al. "A comparison of combined data assimilation and machine learning methods for offline and online model error correction". In: J. Comput. Sci. 55 (2021), p. 101468.
- [8] A. Farchi et al. "Online model error correction with neural networks in the incremental 4D-Var framework". In: arXiv preprint arXiv:2210.13817 (2022).
- Z. Ghahramani and S. T. Roweis. "Learning nonlinear dynamical systems using an EM algorithm". In: Advances in neural information processing systems. 1999, pp. 431–437.
- [10] W. W. Hsieh and B. Tang. "Applying Neural Network Models to Prediction and Data Analysis in Meteorology and Oceanography". In: Bull. Amer. Meteor. Soc. 79 (1998), pp. 1855–1870.
- [11] Q. Malartic, A. Farchi, and M. Bocquet. "State, global, and local parameter estimation using local ensemble Kalman filters: Applications to online machine learning of chaotic dynamics". In: Q. J. R. Meteorol. Soc. 148 (2022), pp. 2167–2193.
- [12] Q. Malartic et al. "Data assimilation and machine learning subgrid parametrisation in an advanced quasi-geostrophic model". In: (2022).
- [13] J. Marshall and F. Molteni. "Toward a Dynamical Understanding of Planetary-Scale Flow Regimes". In: J. Atmos. Sci. 50 (1993), pp. 1792–1818.
- [14] V. D. Nguyen et al. "EM-like Learning Chaotic Dynamics from Noisy and Partial Observations". In: arXiv preprint arXiv:1903.10335 (2019).
- [15] S. Rasp et al. "WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting". In: J. Adv. Model. Earth Syst. 12 (2020), e2020MS002203.