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Machine learning

Learning data-driven models from dense and perfect observations

▶A typical (supervised) machine learning problem: given observations yk of a system, derive a surrogate
model of that system from the loss function:

J (p) =
K∑

k=1

∥xk − Mk (p, xk−1)∥2

▶The surrogate model to be learned M depends on a set of coefficients p (e.g., the weights and biases of a
neural network).

▶This requires dense and perfect observations of the system.

▶ In the goesciences, observations are usually sparse and noisy: we need data assimilation!
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

▶A rigorous Bayesian formalism for this problem:1

J (p, x0:K) = − ln p(p, x0:K |y0:K)

=
1
2

K∑
k=0

∥yk − Hk(xk)∥2
R−1

k

+
1
2

K∑
k=1

∥xk − Mk(p, xk−1)∥2
Q−1

k

− ln p(x0, p) + Cst

▶This resembles a typical weak-constraint 4D-Var cost function!

▶Machine learning limit
If the physical system is fully and directly observed, i.e. Hk ≡ I, and if the observation errors tend to zero,
i.e. Rk → 0, then the observation term in the cost function is completely frozen and imposes that xk ≃ yk,
so that, in this limit, J (p, x0:K) becomes

J (p) =
1
2

K∑
k=0

∥yk − Mk (p, yk−1) ∥2
Q−1

k

− ln p(p).

1[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

▶We need to minimise this cost function on both states and parameters:

J (x0:K , p) = − ln p(x0:K , p|y0:K)

=
1
2

K∑
k=0

∥yk − Hk(xk)∥2
R−1

k

+
1
2

K∑
k=1

∥xk − Mk (p, xk−1) ∥2
Q−1

k

− ln p(p) − ln p(x0).

▶DA is used to estimate the state and then ML is used to estimate the model (coordinate descent):

(p⋆,x⋆
0:K)

y0:K

Initialisation

choose p0

DA step

estimate xa
0:K

ML step

update p

p0 xa
0:K

p

DA: 4D-Var, WC 4D-Var, EnKS, IEnKS, etc. and ML: Neural network.

▶This DA standpoint is remarkable as it allows for noisy and partial observations of the physical system.
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

▶Focusing on the marginal p(p, Q1:K |y0:K , R0:K ):

p(p, Q1:K |y0:K , R0:K ) =

∫
dx0:K p(p, Q1:K , x0:K |y0:K , R0:K),

yields the loss function:

J (p, x0:K , Q1:K) = − ln p(p, x0:K , Q1:K |y0:K , R0:K)

=
1
2

K∑
k=0

{
∥yk − Hk(xk)∥2

R−1
k

+ ln |Rk|
}

+
1
2

K∑
k=1

{
∥xk − Mk(p, xk−1)∥2

Q−1
k

+ ln |Qk|
}

− ln p(x0, p, Q1:K).

▶This problem can (almost) fully be solved from a Bayesian standpoint using the empirical
Expectation-Maximisation algorithm with an ensemble smoother2.
−→ Very successful on low-order models3, but it has a significant numerical cost.

2[Ghahramani et al. 1999; Nguyen et al. 2019; Bocquet et al. 2020]
3[Bocquet et al. 2020]
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Offline learning

Offline model correction

▶Partial and noisy observations of a physical model with a proxy of the dynamics φ:

(p⋆,x⋆
0:K)

y0:K

Initialisation

φ,p0

DA step

estimate xa
0:K

ML step

update p

φ⊕ η(p0) xa
0:K

φ⊕ η(p)

where the hybrid physical/statistical model is a combination of the proxy φ-model and a NN model:

Physical model φ

Statistical model η(p)

Hybrid model φ⊕ η(p)

▶Fully observed system whose dynamics are unknown:

(p⋆,x⋆
0:K)

η(p0)

Initialisation

dataset y0:K

DA step

estimate xa
0:K

ML step

update p

y0:K η(p)

xa
0:K
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Offline learning

Loop order

▶ Loop order–1/2: This is traditional DA. The output is the analysed trajectory xa
0:K over the DA window. In

an incremental operational setup, the usable output are the analysis increments xa
k − xf

k.

−→ [xa
0:K ]1

▶ Loop order–1: The analysed trajectory/analysis increments are used to train a DL model η, possibly with the
help of a known physical model φ.

−→ φ ⊕ η1

▶ Loop order–3/2: Within an hybrid model configuration the DL correction to the model can be used to carry
out a re-analysis with the observations y0:K . We implemented this in several configurations from low-order
model to realistic models (within OOPS).

−→ [xa
0:K ]2

▶ Loop order–2: Using these new analysis increments, we can re-train the DL model to obtain an improved
model correction. We showed this to be efficient on low-order model but not yet on more realistic, possibly
already well-estimated, fields such as ERA-5 dataset.

−→ φ ⊕ η2

▶ Loop order–5/2, . . . .
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Offline learning

Example of loop order–1 and 3/2

▶ Learning a purely data-driven meteorological model from ERA-5 reanalysis
▶ True model: A selection of ERA-5 fields in 1979-2018 at 0.5625◦.4

▶ DL model: Residual NN at the same resolution.

▶ Forecast skill score of the geopotential at 500hPa as a function of the forecast lead time.5
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▶ η has also successfully been tested with DA, hence at loop order–3/2.
4[Rasp et al. 2020]
5[Bocquet et al. 2022]
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Offline learning

Example of loop order–1 and 3/2, with an hybrid model

▶Marshall-Molteni6 3-layer intermediate QG model: Learning subgrid scale parametrisation at loop order–1 to
perform more accurate forecasts at low resolution (LR) from high resolution simulations (HR).7

Time

t = 0

t = 24h

t = 48h

t = 72h

Truth φHR Error with φLR Error with φLR ⊕ ηHR→LR

▶φLR ⊕ ηHR→LR has also successfully been tested with DA, hence at loop order–3/2.
6[Marshall et al. 1993]
7[Malartic et al. 2022b]

M. Bocquet ECMWF-ESA workshop, 13-17 November 2022, Reading, UK 9 / 13



Online learning

Online model error correction

▶ So far, the model error has been learned offline: a long analysis trajectory is required.

▶We now investigate the possibility to perform online learning, i.e. improving the correction as
new observations become available.

▶To do this, we use the formalism of DA to estimate both the state and the NN parameters:8

J (p, x) =
1
2

∥∥x − xb
∥∥2

+
1
2

∥∥p − pb
∥∥2

Bp−1
+

1
2

K∑
k=0

∥yk − Hk ◦ Mk(p, x)∥2
R−1

k

.

▶Potential cross-covariance between state and NN parameters are neglected in the prior.

8[Farchi et al. 2021; Bocquet et al. 2022]
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Online learning

Online model error correction

▶ Sequential DA, yet another approximate solution to the original Bayesian problem:

Initialisation

φ,x0,p0

DA+ML

update xI1 ,p

DA+ML

update xI2 ,p

DA+ML

update xI3 ,p
(p⋆,x⋆

0:K)

yI1 yI2 yI3

x0

φ⊕ η(p0)

φ⊕ η(p)[xi1 ]

φ⊕ η(p)

φ⊕ η(p)[xi2 ]

φ⊕ η(p)

▶ Information is flowing from one window to the next using the prior for the state xb and for the
NN parameters pb.

▶Already been investigated with an EnKF, with promising solutions but limitations as well.9

9[Bocquet et al. 2021; Malartic et al. 2022a]
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Online learning

Numerical illustration with the two-scale Lorenz model

▶ We use the tendency correction approach, with the same simple CNN as before, and still using 4D-Var.10
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▶ The online correction steadily improves the model.
▶ At some point, the online correction gets more accurate than the offline correction.
▶ Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!

10[Farchi et al. 2021]
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Conclusions

Conclusions

▶Main messages:
Bayesian DA view on joint state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.
Offline or online optimisation strategies.
Loop order-N correction successful on 1D models (L96, L05III, L96i, mL96).

▶ In progress: more ambitious models and datasets at higher loop order
Application to the Marshall-Molteni 3-layer QG model on the sphere [order–3/2]
Application to the ERA5 and CMIP data (WeatherBench11-like challenge) [order–2]
Application to the ECMWF IFS [order–3/2]12

−→ Alban Farchi’s talk and Marcin Chrust’s poster
Application to sea-ice surrogate modelling [order–1/2 & order–1]: Schmidt
Futures/VESRI/SASIP project

−→ Tobias Finn’s and Simon Driscoll’s posters

11[Rasp et al. 2020]
12[Farchi et al. 2022]
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