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This presentation is largely based on the following paper:

Katherine Haynes, Ryan Lagerquist , Marie McGraw , Kate Musgrave , Imme Ebert-Uphoff, 
Creating and evaluating uncertainty estimates with neural networks for environmental-science 
applications, AMS journal Artificial Intelligence for the Earth Systems (conditionally accepted).

Preprint: https://doi.org/10.1002/essoar.10512538.1

Code provided for all methods: https://github.com/thunderhoser/cira_uq4ml

https://doi.org/10.1002/essoar.10512538.1
https://github.com/thunderhoser/cira_uq4ml


Presentation Overview
1. Motivation
2. Aleatory vs. Epistemic Uncertainty – it’s not as trivial as it seems.
3. Simple methods to estimate uncertainty.

How can we estimate uncertainty when using neural network methods for classification 
or regression?

4. Simple methods to evaluate uncertainty.
Once we obtained uncertainty estimates, how do we know whether they are any good?

5. Illustration of the above for real-world application.

Intended audience: 
• Novices - folks who use NNs in their applications and would like to get uncertainty estimates, but don’t 

know where to get started.
• Intermediate – folks who have tried some uncertainty modeling, but would like to learn more about 

other methods and evaluation. 
To uncertainty experts:  now is a good time to check your email, take a nap, etc.
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Motivation
• Neural networks are now widely used in weather/climate applications.
• Classic neural networks have no awareness of their own limitations:

– They deliver a result.
– They may also deliver some sort of “confidence score”, but that is usually not a 

reliable score. 
Ex.:  A NN for classification may have a softmax layer that provides a “pseudo-probability” for each 
class.  However, it’s understood to just be an indication, not a true probability for that class.

• In the forecasting world we want a reliable uncertainty estimate, to be delivered 
along with the prediction of a NN.

• Some acceptable means to express uncertainty:
1. Probability distribution, e.g., parameters of a normal (or other) distribution.
2. Non-parametric summary statistics, e.g., confidence interval, histogram or quantiles.
3. Ensemble, i.e. a set of representative samples of the true distribution.
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What could that look like?
Sample application:
• “ML soundings” project
• Task:  Use AI to improve vertical 

profiles for temperature and 
dewpoint generated by Rapid Refresh 
(RAP) model.

• Shown here: 
– estimate of dewpoint, 
– along with estimate of 

uncertainty (95% confidence 
interval).
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A), B), C): Individual soundings. 
D): Mean over all test samples.

Black:  Observation of dewpoint 
(by radio sonde)

Blue:   Vertical profiles predicted by AI 
Gray lines:  Uncertainty predicted by AI 

(95% confidence interval)



Key Vocabulary
The ML community distinguishes two components of uncertainty:
1. Aleatory uncertainty 
2. Epistemic uncertainty

A word of caution: 
Many ML papers make the concepts of aleatory and epistemic uncertainty sound as if they are 
unambiguous and straight forward.  But they are neither!  

• Aleatory and epistemic uncertainty are very slippery concepts – highly dependent on 
community and context.

• In fact, Bevan (2022) illustrates four different definitions of the terms aleatory and epistemic 
uncertainty that are used in different communities.

• Be careful that you know which definition you’re using.  Many papers do not make that clear.
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Caution – concepts of 
aleatory/epistemic uncertainty 
are not as simple as they seem!



Classic example from ML textbooks to explain 
aleatory vs. epistemic uncertainty
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Aleatory 
(internal 

variability)

Epistemic 
(out-of-

distribution error)

Aleatory uncertainty:
Given x, there is no unique value for y, because of 
internal variability of observed system.  
--> Even the best model cannot get it “exactly right”.

Epistemic uncertainty:
The model is trying to make predictions in an area 
where few training samples were provided 
--> Large errors (out-of-distribution error)

Blue dots = training samples
Red line: model prediction

many training samples few training samples
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Stochastic uncertainty
(internal variability)

The aleatory-epistemic divide

Everything else

Math definitions

Aleatory (math)

Epistemic (math)

Uncertainty in data
(stochastic or otherwise)

Everything else

Aleatory (ML)

Epistemic (ML)

ML definitions

Dividing lines are different in math vs. ML, but concepts are called the same!
Can get very confusing.

alea:  Latin word, referring to game of dice (random).
epistēmē:  Greek word, meaning knowledge (model).



Why didn’t we notice that difference in 
definition in the classic textbook example?
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Aleatory 
(internal 

variability)

Epistemic 
(out-of-

distribution error)

Blue dots = training samples
Red line: model prediction

many training samples few training samples

For this example the math and ML definitions align, because it’s an idealized example:
• Only type of data error shown here: internal variability.
• Only type of model error shown here: out-of-distribution error.
No wonder the difference in definition isn’t obvious here.  



Aleatory vs. Epistemic
Math:  Distinction is based on whether source of uncertainty is stochastic.
ML:      Distinction is based on whether uncertainty is inherent in the data.

Why is this difference important to understand?  
1. Because difference in definitions creates a lot of confusion.

Hard to understand papers sometimes, because of that.
2. ML papers sometimes even use the alternate names 

(aleatory=stochastic=irreducible), which creates even more confusion.
3. Using the ML definitions, the divide between aleatory and epistemic becomes context dependent.  

Example:  If you modify your data set, e.g., add more features, some of the aleatory uncertainty can become 
epistemic uncertainty!

Recommended reading: 
• Hüllermeier, E. and Waegeman, W., 2021. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and 

methods. Machine Learning, 110(3), pp.457-506. https://doi.org/10.1007/s10994-021-05946-3
• Bevan, L.D., 2022. The ambiguities of uncertainty: A review of uncertainty frameworks relevant to the assessment of environmental 

change. Futures.   https://doi.org/10.1016/j.futures.2022.102919
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Caution – always make sure to 
know which definition is used 

in a considered study!

https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1016/j.futures.2022.102919


Simple Methods to Estimate Uncertainty
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We selected four simple methods to derive uncertainty estimates with neural networks:

• Three non-Bayesian (max likelihood) methods:
1. Parametric regression
2. Quantile regression
3. Using a Continuous Ranked Probability Score (CRPS) loss

Note:  The non-Bayesian methods can only capture aleatory uncertainty. 

• One Bayesian method:
1. Monte Carlo Dropout 

Note:  Bayesian methods can – in theory - capture both aleatory and epistemic uncertainty.  
Our MC dropout model can only capture epistemic uncertainty due to choice of loss function. 

Note:
• Bayesian Deep Learning is very powerful, but is skipped here – focus first on simple methods.  
• We only include Monte Carlo Dropout, which can be considered a special case of Bayesian Deep 

Learning.



1. Parametric regression (Non-Bayesian method)
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Key idea:
• Train NN to estimate the parameters of 

a probability distribution 

How to add this to an existing NN model:
• First choose form of distribution 

(normal, exponential, etc.) 
→ provides parameters to be estimated 
→ replace existing output layer with

custom layer

• Loss function:  
Replace by log-likelihood loss function

Examples:  Barnes et al. (2021), 
Regression Notebook

Can be used for

Classification No

Regression Yes

Can be used to capture

ML-Aleatory Yes

ML-Epistemic No
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2. Quantile regression (Non-Bayesian method)

Key idea:
• Train NN to estimate a set of quantiles

How to add this to an existing NN model:
• Choose number of quantiles, m.

→ replace existing output layer with
custom layer

• Need to add component to architecture 
that prevents quantile cross-over

• Loss function:  
Replace by quantile loss function

Examples: Quantile Regression Notebook

Can be used for

Classification Yes

Regression Yes

Can be used to capture

ML-Aleatory Yes

ML-Epistemic No
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3. Using a CRPS loss (Non-Bayesian method) 

Key idea:
• Train NN to estimate an ensemble

How to add this to an existing NN model:
• Choose number of ensembles, k.

→ replace existing output layer with
custom layer

• Loss function:  
Replace by CRPS loss function

Examples:  CRPS Notebook, 
Regression Notebook

Scher and Messori (2021), Rasp and Lerch 
(2018), Brey (2021)

Can be used for

Classification No

Regression Yes

Can be used to capture

ML-Aleatory Yes

ML-Epistemic No
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4. MC Dropout and Bayesian Deep Learning (Bayesian method)

Key idea (shown for MC Dropout, but largely also 
true for Bayesian Deep Learning):
• Each NN weight is probability distribution (not 

single number)
• For each prediction: 

• Model randomly selects weights k times 
→ generate ensemble of k models

• Each model provides one prediction 
→ generate ensemble of k predictions

How to add MC dropout to existing NN model:
• Add dropout layers
• Use custom loss function

Note: Computationally expensive at run-time, 
because of all the required sampling.

Examples: Monte Carlo Notebook
Regression Notebook

Can be used for

Classification Yes

Regression Yes

Can be used to capture

ML-Aleatory Depends

ML-Epistemic Yes
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But how do we know which estimates are good?
→ Need methods to evaluate uncertainty estimates!

Now we have: 
• 4 methods to choose from to calculate uncertainty estimates.

Can use those to generate 
uncertainty estimates



Selected methods for uncertainty evaluation

1. Spread-skill plot      Delle Monache et al. (2013) 
2. Probability integral transform (PIT) histogram     Hamill (2001) 
3. Discard test              Barnes and Barnes (2021) 

Plus – don’t forget to evaluate central prediction again, as errors might have changed when 
uncertainty evaluation was added to the model.
Sample method:  
4. Attributes diagram    Hsu and Murphy (1986) 

Code for all four is included in notebooks as well.
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1. Spread-skill plot
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Key idea:
• Question: For a given predicted model spread, 

what is the actual model error? 
• Plot the relationship between predicted 

uncertainty and actual RMSE of prediction.

How to read a spread-skill plot:
• Diagonal is ideal:  predicted uncertainty 

matches actual error of prediction.
• Above diagonal: uncertainty estimate is too 

low (model overconfident).
• Below diagonal: uncertainty estimate is too 

high (model underconfident).

Can be used for

Classification Yes

Regression Yes

Sample plot for four models (one color each).  Disregard for now which models are used.



2. Probability Integral Transform (PIT)
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Can be used for

Classification No

Regression Yes

Key idea:
• PIT is the cumulative distribution 

function (CDF) of the predicted 
distribution, evaluated at the observed 
value. 

• This can also be interpreted as the 
quantile of the predictive distribution 
where the observed value occurs. 

• Generalization of “rank histogram” (aka 
“Talagrand diagram”)

How to read a PIT histogram:
• If uncertainty perfectly calibrated, then  

PIT histogram is flat.
• If histogram higher at center: model is 

underconfident (uncertainty too low).

Sample plot for one model

Note: a uniform PIT histogram is a necessary but 
not sufficient condition for calibrated uncertainty.



3. Discard test
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Key idea:
• Calculate uncertainty estimate.
• Discard the samples with highest 

X% of uncertainty estimated.
• Calculate model error (RMSE) for 

only the remaining samples. 

How to read a discard test plot:
• Bars for each model (single color) 

should decrease monotonically  
from left to right → uncertainty is 
well calibrated.

Can be used for

Classification Yes

Regression Yes
Sample plot for four models (one color each).  Disregard for now which models are used.



Comments on uncertainty evaluation methods
1. Spread-skill plot
2. Probability integral transform (PIT) histogram 
3. Discard test

• All three methods evaluate total uncertainty.  They do not distinguish between aleatory and 
epistemic uncertainty. 
Methods exist to split total uncertainty into ML-aleatory and ML-epistemic components.  Ortiz 
et al. (2022) show how to do that for satellite applications (extra step).

• Caveat:  How much ML-epistemic uncertainty is detected strongly depends on the choice of 
the test set!
– Out-of-distribution error is a key component of the ML-epistemic uncertainty. 
– But we see out-of-distribution error reflected in these tests only if the test data is chosen 

to have samples that are very different from the training data!
– Yet to figure out:  how to deal effectively with that caveat. 
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Putting it all together for our sample application

Sample application:
• “ML soundings” project
• Task from before
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Calculate uncertainty estimates using 4 methods:
1. Parametric regression, normal distribution 

(PDP_Norm)   
2. Parametric regression, SHASH distribution: 

(PDP_Shash)                  SHASH = sinh-arcsinh
3. Using CRPS loss to create ensemble 

(ENS_CRPS)
4. Monte Carlo Dropout 

(MC_DROPS)

Then evaluated all of them with the three tests:
1. Spread-skill plot
2. PIT
3. Discard test
Plus: attributes diagram (to evaluate mean pred.)

Results on next slides.

(No quantile regression 
model here.)



What does uncertainty evaluation tell us?
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A. Attributes diagram:
• Mean prediction is pretty good 

with all four methods.
B. Spread-skill plot:

• MC dropout is performing poorly
• Other models are well calibrated 

for small uncertainty values, then 
become underconfident.

C. PIT histogram:
• MC dropout seems much too 

overconfident.
• Other models are doing ok, tend 

to be underconfident.
D. Discard test:

• All models are doing well, except 
for MC dropout.

Note:  Our version of MC dropout performs poorly in these tests, because it captures only ML-epistemic, not ML-aleatory uncertainty.  
And since we did not put much emphasis on creating out-of-distribution samples in the test set, MC dropout can’t shine here.  



Summary and Discussion
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• Many simple methods exist to derive uncertainty estimates.  (Sample code provided)
• Many simple methods exist to evaluate uncertainty estimates. (Sample code provided)
• We suggest to always use several evaluation methods, because each one tells you something 

different.  Differences are discussed in more detail in paper. 
• We hope these resources are useful for the community to speed up integration of such UQ 

methods into applications.

Discussion and Future Work: 
• Definitions of aleatory and epistemic uncertainty are inconsistent between disciplines.  We need 

to be more concise in our use of these terms! 
• IMHO: implementation of these methods for uncertainty estimation and evaluation is not the 

challenge.  The challenge is their proper use and interpretation - that is the hard part!
• Many questions remain: 

Ex.: How do we choose the test set to ensure that it contains sufficient out-of-distribution 
samples to provide representative epistemic error of a model?  

• Maybe some of you have already figured all of this out?  Would love to hear everyone’s thoughts.
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Related talk
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• D.J. Gagne is going to present on Wed afternoon:

Explainable Uncertainty in Machine Learning for Weather Prediction 

Some key ideas:
– Explores evidential neural networks.
– Those can be used to derive estimates of both epistemic and aleatoric uncertainty.
– One can then apply XAI methods to models to see how changes in the inputs affect the 

uncertainty estimates.
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Questions or suggestions?

Imme Ebert-Uphoff 
iebert@colostate.edu
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