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EUMETSAT Fellowship:
Deep learning to predict thunderstorm hazards

− Direct warning for hazards rather than abstract measures of 
thunderstorm intensity

− Similar network architecture can predict many hazards
Predictions directly on a grid, avoiding storm object detection & tracking

Objectives

Rain Hail Lightning Wind
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Recurrent-convolutional network
Encoder-forecaster model:
• Encoder produces an analysis of 

input data
• Forecaster turns the analysis into a 

forecast

Recurrent-convolutional 
architecture:
• Convolutional layers model spatial 

structure
• Recurrent layers model temporal 

evolution

General solution for modeling 
temporal evolution of 2D fields
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Weather4Cast competition

• Organized by IARAI in 
cooperation with Nowcasting 
SAF

• Goal: Predicting time 
evolution of NWC SAF data 
products

• Two series: “Core” and 
“Transfer learning”

• 11 data regions in and around 
Europe

• Placed 1st in both series of 
the competition

Image: IARAI
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Adapting network to multi-source data

Adapted network to nowcasting 
thunderstorm hazards probabilistically

Inputs of different resolutions in past 
and/or future timeframes
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Adapting network to multi-source data

Adapted network to nowcasting 
thunderstorm hazards probabilistically

Inputs of different resolutions in past 
and/or future timeframes

MSG/SEVIRI Swiss radar

Lightning

COSMO
NWP

DEM
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Study area / data sources

• Switzerland + surroundings
• Highly variable terrain
• Some of the highest lightning 

intensities in Europe are 
found in the region
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Lightning
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Lightning
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Skill vs. lead time

Comparison vs. Eulerian and 
Lagrangian persistence:
Advantage over persistence, 
grows with time

Lead time [min]
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Calibration

How does the predicted 
probability correspond to 
actual occurrence of 
lightning?

• It depends on the loss 
function!

• Usually easy to recalibrate
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Hail

ML objective:
probability of hail 
from Swiss radar 
network

Advance warning of 
hail initiation as 
short lead times

Prediction spreads 
out faster than 
lightning

ML objective:
probability of hail 
from Swiss radar 
network

Advance warning of 
hail initiation as 
short lead times

Prediction spreads 
out faster than 
lightning prediction
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Heavy precipitation

“Ground truth”:
CombiPrecip radar+gauge
precipitation estimate

Predicting the probability of 
heavy precipitation
(four classes, here > 10 mm/h)

Predicting 1-h accumulation 
instead of 5-min timesteps
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Data source importance

Trained the model with all 
different combinations of 
data sources

• Radar: dominant source
• Satellite: useful 

everywhere, available 
globally

• Lightning: good for 
predicting lightning

• NWP: Would be better 
at longer lead times?

• DEM: marginal benefits
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Data source importance
Shapley values quantify data source importance as a function of lead time
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Outlook

Wind warnings
• But what to use for ground 

truth?

Including new data sources
− MTG (FCI + LI)
− Polarimetric radar

Generative nowcasting →
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• Recurrent-convolutional network to predict multiple thunderstorm hazards
− Demonstrated for lightning, hail, heavy precipitation
− Can be adapted to other prediction tasks

• Can predict motion, growth and decay of thunderstorms
• Will work on running model real-time at MeteoSwiss
• Paper submitted, preprint available (https://arxiv.org/abs/2203.10114)

Summary
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