

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Seamless prediction of multiple

Objectives

EUMETSAT Fellowship:

Deep learning to predict thunderstorm hazards

- Direct warning for hazards rather than abstract measures of thunderstorm intensity
- Similar network architecture can predict many hazards

Predictions directly on a grid, avoiding storm object detection & tracking

Recurrent-convolutional network

Encoder-forecaster model:

- Encoder produces an analysis of input data
- Forecaster turns the analysis into a forecast

Recurrent-convolutional architecture:

- Convolutional layers model spatial structure
- Recurrent layers model temporal evolution

General solution for modeling temporal evolution of 2D fields

Weather4Cast competition

- Organized by IARAI in cooperation with Nowcasting SAF
- Goal: Predicting time evolution of NWC SAF data products
- Two series: "Core" and "Transfer learning"
- 11 data regions in and around Europe
- Placed 1st in both series of the competition

Image: IARAI

Fig. 4. As Fig. 1, but for cma. The white lines show the contour at 0.5, which is the decision threshold for a binary cloud mask.

Adapting network to multi-source data

Adapted network to nowcasting thunderstorm hazards probabilistically

Inputs of different resolutions in past and/or future timeframes

Adapting network to multi-source data

Adapted network to nowcasting thunderstorm hazards probabilistically

Inputs of different resolutions in past and/or future timeframes

Study area / data sources

- Switzerland + surroundings
- Highly variable terrain
- Some of the highest lightning intensities in Europe are found in the region

Lightning

Lightning

Skill vs. lead time

Comparison vs. Eulerian and Lagrangian persistence: Advantage over persistence, grows with time

How does the predicted probability correspond to actual occurrence of lightning?

- It depends on the loss function!
- Usually easy to recalibrate

ML objective: probability of hail from Swiss radar network

Advance warning of hail initiation as short lead times

Prediction spreads out faster than lightning prediction

0

Heavy precipitation

"Ground truth": CombiPrecip radar+gauge precipitation estimate

Predicting the probability of heavy precipitation (four classes, here > 10 mm/h)

Predicting 1-h accumulation instead of 5-min timesteps

Data source importance

ECN

0.4

0.6

0.8

Trained the model with all different combinations of data sources

- **Radar**: dominant source
- **Satellite**: useful everywhere, available globally
- Lightning: good for predicting lightning
- **NWP**: Would be better at longer lead times?
- **DEM**: marginal benefits

(a) Lightning FL $\gamma = 2$					
DEM Lig NWP	0.309	0.316	0.346	0.385	
Lig NWP	0.313	0.315	0.344	0.439	
DEM NWP	0.327	0.343	0.428	0.589	
DEM Lig	0.306	0.310	0.348	0.411	
NWP	0.331	0.335	0.452	0.591	
Lig	0.308	0.314	0.346	0.435	
DEM	0.331	0.341	0.471	0.985	
	0.331	0.342	0.464	1.00	
	Sat	Rad	Sat		

(b) Hail CE				
0.456	0.457	0.516	0.559	
0.453	0.454	0.534	0.568	
0.452	0.454	0.572	0.696	
0.460	0.455	0.525	0.583	
0.457	0.453	0.592	0.713	
0.462	0.479	0.550	0.734	
0.455	0.455	0.620	0.963	
0.465	0.474	0.643	1.00	
Sat	Rad	Sat		

1.0

(C)	Precipi	tation	CE	

0.443	0.451	0.540	0.603
0.451	0.454	0.544	0.629
0.450	0.448	0.581	0.698
0.451	0.458	0.600	0.689
0.439	0.454	0.586	0.706
0.457	0.464	0.607	0.726
0.455	0.460	0.600	0.949
0.465	0.464	0.631	1.00
Sat	Rad	Sat	

1.0 0.6 0.8

Data source importance

Shapley values quantify data source importance as a function of lead time

Wind warnings

• But what to use for ground truth?

Including new data sources

- MTG (FCI + LI)
- Polarimetric radar

Generative nowcasting \rightarrow

Summary

- Recurrent-convolutional network to predict multiple thunderstorm hazards
 - Demonstrated for lightning, hail, heavy precipitation
 - Can be adapted to other prediction tasks
- Can predict motion, growth and decay of thunderstorms
- Will work on running model real-time at MeteoSwiss
- Paper submitted, preprint available (https://arxiv.org/abs/2203.10114)

