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“A photograph of an astronaut riding a horse”

https://en.wikipedia.org/wiki/Stable_Diffusion
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Hey, DALL-E, show me a 
“Scientist doing magic”

https://openai.com/blog/dall-e/
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Four-variable state vector – monthly anomalies of near-surface weather:

Pressure SST Precipitation
Air 

temperature

Air temperature and Precipitation from HadUK-Grid, SST and Pressure from 20CRv3. March 1989
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Learn Encoder and Generator
That make the two fields the same:
G(R(E(field))) ≈ field
Make distribution of xi ≈ N(0,1)

E(weather field) = (m1,m2,…,m100,s1,s2,…,s100)

Reparameterization:
Make sample from means and standard deviations

(x1,x2,…,x100) = N(m1,m2,…,m100,s1,s2,…,s100)

weather fields = G(x1,x2,…,x100)

Deep convolutional neural net
(Encoder)

Deep convolutional neural net
(Generator)





Validation for one test month
(1989-03).

Left: Target (truth)

Middle: ML model output

Right: Target (x) v. model (y)
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Validation for all the test months. Black – target, red – model. Means over the whole reconstructed field.
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Same

ML
Model

ML model is bi-directional
Fields to state vector
and/or
State vector to fields



All-fields assimilation for one 
test month (1989-03).

Left: Target (truth)

Middle: ML model output

Right: Target (x) v. model (y)
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Results of assimilating all four fields. Black – target, red – model. Means over the whole reconstructed field.
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AMIP-run – SST forced



SST-only assimilation for one 
test month (1989-03).

Left: Target (truth)

Middle: ML model output

Right: Target (x) v. model (y)
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Results of assimilating SST only. Black – target, red – model. Means over the whole reconstructed field.
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20CR-equivalent 
SLP & SST forced



SST and PRMSL assimilation for
one test month (1969-01).

Left: Target (truth)

Middle: ML model output

Right: Target (x) v. model (y)
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Results of assimilating SST and PRMSL. Black – target, red – model. Means over the whole reconstructed field.
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Perturbation experiments
Sensitivity/attribution

State 
vector

(x1,x2,…,x100)

Perturb+1C
ML

Model



SST perturbation effect for one 
test month (1903-10: the 
wettest month on record).

Left: ML model output after 
Assimilating all fields.

Middle: ML model output after
Assimilating perturbed SST 
(+1C)

Right: Observed (x) v. perturbed 
(y)
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Different

ML
Model

Generator trained on 
desired output

Pretty-much 
anything

(weather dependent
& with monthly training 

data)
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Generator trained on 
flow observations.

Flow of the 
Thames at 
Teddington.

Image from Wikipedia
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2-layer perceptron trained on 
Flow data (Thames at Kingston) from NRFA:
https://nrfa.ceh.ac.uk/data/station/info/39001
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Trained ML model to represent 
multivariate climate state as a 100-
dimensional latent-space (LS) vector. 
ML model is a Deep Convolutional 
Variational AutoEncoder, trained on 
HadUK-Grid.

ML model is bidirectional – can 
estimate LS vector for a month from an 
arbitrary subset of real climate state, 
and then recover full climate state 
from LS vector. => Data Assimilation: 
recover full state from sparse 
observations.

ML model is ~1,000,000 times as fast 
as an equivalent GCM => many 
applications in reanalysis and climate 
modelling.

Straightforwardly extensible to add 
other weather fields or arbitrary 
impacts variables => Climate Services.



philip.brohan@metoffice.gov.uk @philipbrohan
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