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Some data assimilation context

Data assimilation deals with the problem of estimating model parameters or model
state variables by combining prior estimates and observations, together with
information about their uncertainties, in a statistically optimal manner.

Figure – From the International Space Science Institute (Switzerland) website

Latent data assimilation - ECMWF-ESA, Reading, 15th November 2022 2/19



Context : the state estimation problem

♦ Let us consider the following stochastic equation which models the system
evolution along time (for instance the evolution of atmosphere or ocean) :

xk = Mk(xk−1) + ηk

yk = Hk(xk) + vk

➤ xk ∈ Rn is the system state at time tk
➤ yk ∈ Rm is the observed state value (data) at time tk
➤ Mk involves the propagation process of the dynamical system
➤ Hk is the observation operator at time tk
➤ ηk is the model error considered as a random variable
➤ vk is the observation error considered as a random variable
➤ The errors are assumed to be unbiased and uncorrelated in time

♦ We wish to estimate xk given a sequence of observations over time,
Yk = [yo1 , . . . , y

o
k]. Since the system is stochastic, we cannot expect to obtain

the solution exactly. Instead, we consider its conditional probability distribution
function, p(xk|Yk).
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Solution algorithm : Ensemble data assimilation

➤ Ensemble algorithms aim to estimate the mean and the covariance matrix
of - supposedly - Gaussian distributions with a few random samples.

Figure – Ensemble data assimilation, from Tandeo et al. A Review of Innovation-Based Methods to Jointly
Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation

Propagation step (p(xk|Yk−1)) : xf
k = Mk(x

a
k−1)

P f
k = MkP

a
k−1M

T
k +Qk

Correction step (p(xk|Yk)) : Kk = P f
k H

T
k (Rk +HkP

f
k H

T
k )−1

xa
k = xf

k +Kk(yk −Hk(x
f
k))

P a
k = (I −KkHk)P

f
k

➤ In this work, we focus on the Ensemble Transform KF with model error
(ETKF-Q) [Fillion et al., 2020].
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Ensemble Transform Kalman Filter (ETKF)

♦ Find a low rank approximation to the error covariance matrix, i.e.

P f ≃ Sf (Sf )T

where P f ∈ Rn×n, Sf ∈ Rn×r with r ≪ n.

♦ Sf is obtained with random samples.

♦ Let us define d = y −H(xf ). The solution can be rewritten as

xa = xf +Kd = xf + P fHT(R+HP fHT)−1d

= xf︸︷︷︸
∈Rn

+ Sf︸︷︷︸
∈Rn×r

(Sf )THT
(
R+HSf (Sf )THT

)−1
d︸ ︷︷ ︸

wa∈Rr,minimization in Rm

= xf︸︷︷︸
∈Rn

+ Sf︸︷︷︸
∈Rn×r

(
Ir + (Y f )TR−1Y f

)−1
(Y f )TR−1d︸ ︷︷ ︸

wa∈Rr,minimization in Rr

where Y f = HSf in the linear case. In the nonlinear case, this operator can be
approximated with the use of nonlinear operator H.

♦ The solution is a linear combination of the column vectors of the low-rank
matrix Sf .
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ETKF-Q

Algorithm 1: ETKF-Q

Initialization :

1 Ef
0 = [xf,1

0 , xf,2
0 , . . . , xf,r

0 ] ∈ Rn×r, independent random samples (members)

Propagation step :

2 Ef
k = M(Ea

k−1) ⇒ Ef
k = [xf,1

k , xf,2
k , . . . , xf,r

k ] ∈ Rn×r

3 P f
k = Λf

k

(
Λf
k

)T

4 Including model error (update P f
k ) : P f

k = Λf
k(Λ

f
k)

T +Q

5 Calculate Sf
k such that P f

k = Sf
k (S

f
k )

T

Correction step :

6 Solve
(
Ir + (Y f

k )TR−1
k Y f

k

)
wa

k = (Y f
k )TR−1

k dk ⇒ [Y f
k ]i =

H(x
f,i
k

)−ȳf

√
r−1

7 xa
k = x̄f

k + Sf
kw

a
k ⇒ x̄f

k is the mean of the members

8 Sa
k = Sf

k

[
Ir + (Y f

k )TR−1
k Y f

k )
]−1/2

9 xa,i
k = xa

k + inflation×
√
r − 1 [Sa

k ]i ⇒ 1/r
∑r

1 x
a,i
k = xa

k
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Dimension Reduction

Main assumption : we consider a dynamical system which can be represented
in a low-dimensional space.

♦ Then, is it possible to leverage the existence of this low-dimensional space to :

1. reduce the computational cost
2. reduce the effect of the noise
3. extract the main features of the data

➤ Linear methods : Proper Orthogonal Decomposition
([Lumley, 1967, Holmes et al., 2012]), Krylov-subspace methods
([Gallivan et al., 1994]), Balanced truncation ([Moore, 1981]), etc...

➤ Nonlinear methods : quadratic manifold ([Geelen et al., 2022]), autoencoders
([Goodfellow et al., 2016]), etc...

⇒ in this talk, we focus on nonlinear methods based on deep learning techniques.
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A few references

♦ [Mack et al., 2020] uses convolutional auto-encoders to find a reduced
space for 3D-variational data assimilation. No dynamics.

♦ [Casas, 2018] uses Ensemble KF in the reduced space where the dynamics
are propagated by using surrogate model based on deep learning. The
dimension reduction is based on linear methods.

♦ [Amendola et al., 2020] uses a variant of Kalman Filter in a latent space
of convolutional AE and propagates the model by using surrogate model
based on deep learning. AE and surrogate model are trained separately.
Observations are mapped to the latent space.

♦ More recently, [Zhuang et al., 2022], [Cheng et al., ] and
[Mohd Razak et al., 2022] also investigated combining autoencoders with
a deep-learning based surrogate.
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What we propose ?

♦ [Peyron et al., 2021] performs ETKF-Q in a latent space and
propagates the model by using surrogate model based on deep
learning. Main contributions :

➤ All-at-once optimization (AE + Surrogate)

➤ Surrogate model loss with several time-steps (increase stability)

➤ Model error in the latent space

➤ Observations are not projected to the latent space. No
additional error from this mapping.

➤ Easy to implement for a general reduced space KFs.
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Model reduction with autoencoders

♦ An autoencoder is a neural network that is trained to reconstruct the input data
with the constraint to extract their main features into a reduced space.

♦ The network consists of two parts : an encoding function fe : Rn → Rℓ and a
decoder fd : Rℓ → Rn

Input Layer
Latent

Representation
Output Layer

fe (encoder) fd (decoder)

x ∈ Rn

z ∈ Rℓ

x̃ ∈ Rn

♦ We learn the functions by minimizing the loss :

min
θe,θd

∥x− fd(fe(x, θe)︸ ︷︷ ︸
z

, θd))∥22
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Surrogate model in the latent space of AE

♦ Is it possible to propagate model dynamics in the latent space ?

Latent Space

Surrogate Model

zk z̃k+1

min
θs

∥ fe(xk+1, θe)︸ ︷︷ ︸
zk+1

−fs( fe(xk, θe)︸ ︷︷ ︸
zk

, θs)∥22
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All-at-once optimization with several time steps

Input Layer Output Layer

fe (encoder) fd (decoder)

Latent
Representation

Surrogate Model

xk ∈ Rn x̃k+1 ∈ Rn

zk ∈ R` z̃k+1 ∈ R`

Lsur(θe, θd, θs) =
1
C

C∑
c=1

∥xk+c − fd(fsc (fe(xk, θe), θs)︸ ︷︷ ︸
z̃k+c

, θd)

︸ ︷︷ ︸
x̃k+c

∥22
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All-at-once optimization with several time steps

Input Layer Output Layer

fe (encoder) fd (decoder)

Latent
Representation

Surrogate Model

xk ∈ Rn x̃k+1 ∈ Rn

zk ∈ R` z̃k+1 ∈ R`

L = LAE + λLsur

LAE(θe, θd) =
1
C

C∑
c=1

∥xk+c − fd(fe(xk+c)︸ ︷︷ ︸
x̃k+c

)∥22

Latent data assimilation - ECMWF-ESA, Reading, 15th November 2022 12/19



Latent space DA

♦ Remember that

xa = xf︸︷︷︸
∈Rn

+ Sf︸︷︷︸
∈Rn×r

(
Ir + (Y f )TR−1Y f

)−1
(Y f )TR−1d︸ ︷︷ ︸

wa∈Rr,minimization in Rr

♦ Once we have nonlinear functions, fe and fd, we can obtain initial random

samples in the latent space, i.e. Zf
0 = fe(E

f
0 ) and rewrite the solution as :

xa = fd

 zf︸︷︷︸
∈Rℓ

+ Lf︸︷︷︸
∈Rℓ×r

wa︸︷︷︸
∈Rr


♦ Y f

k is calculated as follows :

[Y f
k ]i =

H(fd(z
f,i
k ))− ȳf

√
r − 1

with ȳf = 1/r

r∑
1

H(fd(z
f,i
k ))

♦ We work with random samples in the latent space.

♦ The solution is obtained by using nonlinear transformation from latent space to
the model space.
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with ȳf = 1/r

r∑
1

H(fd(z
f,i
k ))

♦ We work with random samples in the latent space.

♦ The solution is obtained by using nonlinear transformation from latent space to
the model space.

Latent data assimilation - ECMWF-ESA, Reading, 15th November 2022 13/19



Latent space DA

♦ Remember that

xa = xf︸︷︷︸
∈Rn

+ Sf︸︷︷︸
∈Rn×r

(
Ir + (Y f )TR−1Y f

)−1
(Y f )TR−1d︸ ︷︷ ︸

wa∈Rr,minimization in Rr

♦ Once we have nonlinear functions, fe and fd, we can obtain initial random

samples in the latent space, i.e. Zf
0 = fe(E

f
0 ) and rewrite the solution as :

xa = fd

 zf︸︷︷︸
∈Rℓ

+ Lf︸︷︷︸
∈Rℓ×r

wa︸︷︷︸
∈Rr


♦ Y f

k is calculated as follows :

[Y f
k ]i =

H(fd(z
f,i
k ))− ȳf
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Latent space data assimilation

Algorithm 2: Latent-ETKF-Q

Initialization :

1 Zf
0 = [fe(x

f,1
0 ), fe(x

f,2
0 ), . . . , fe(x

f,r
0 )] ∈ Rℓ×r, members in the latent space

Propagation step :

2 Zf
k = fs(Za

k−1) ⇒ Zf
k ∈ Rℓ×r

3 F f
k = Γf

k

(
Γf
k

)T

4 (update) F f
k = Γf

k(Γ
f
k)

T +Qℓ ⇒ F f
k ∈ Rℓ×ℓ, model error in the latent space

5 Calculate Lf
k such that F f

k = Lf
k(L

f
k)

T

Correction step :

6 Solve
(
Ir + (Y f

k )TR−1
k Y f

k

)
wa

k = (Y f
k )TR−1

k dk

7 zak = z̄fk + Lf
kw

a
k

8 La
k = Lf

k

[
Ir + (Y f

k )TR−1
k Y f

k )
]−1/2

9 za,ik = zak + inflation×
√
r − 1 [La

k]i

10 Solution : xa
k = fd(z

a
k)
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Latent space data assimilation

♦ We may reduce the computational cost and memory when ℓ ≪ n :

the algorithm is performed in the latent space

♦ We may increase the overall accuracy :

➤ The solution is not a linear combination of the ensembles like in the
standard ETK-F. The solution is an output of a nonlinear
transformation learnt through physical state trajectories.

➤ The error covariance matrices are propagated in the latent space.
We may reduce the noise.

♦ We need to define the latent space dimension !

♦ We need to estimate the model error in the latent space !
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Quasi-geostrophic model

The quasi-geostrophic model is described by two variables, namely the streamfunction
ψ and the potential vorticity q which are related through the following equations :
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(1)
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QG model : Numerical Results

♦ Data assimilation parameters :

➥ latent dimension ℓ ∈ {10, 30, 100, 200}.
➥ physical field (ψ) dimension n = 1600.
➥ as many members as the latent dimension (i.e. m = 10, 30, 100, 200).
➥ Observation error covariance matrix R = σRIn with σR = 0.4
➥ 48 iterations/cycles (analogous to a 4-day forecast).
➥ Model error covariance matrix Q = σQIn

♦ Data assimilation grid search :

➥ inflation ranges from 0.8 to 2.0 (to control sampling noise in ETKF-Q)
➥ σQℓ

ranges from 10−6 to 10 (model error in the latent space)

♦ Deep learning parameters :

➥ dataset made of 400 simulations (generated with OOPS).
➥ optimizer : Adam
➥ batch size : 16
➥ the autoencoder and the surrogate model are Multilayer Perceptrons

(MLP) networks.
➥ encoding mapping fe :

(
R1600 → R800

)
→ LReLU(0.5) →

(
R800 → Rℓ

)
→ Id

➥ decoding mapping fd :
(
Rℓ → R800

)
→ LReLU(0.5) →

(
R800 → R1600

)
→ Id

➥ the surrogate consists of four tanh activations followed by a LReLU(0.5)
and an Identity function with skip connections.
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QG model : Numerical Results

♦ Reference ETKF-Q experiment with σQ = 0.1 :

m = 10 m = 30 m = 100 m = 200 m = 1600

RMSE Inflation RMSE Inflation RMSE Inflation RMSE Inflation RMSE Inflation

0.482 1.0 0.264 1.3 0.203 1.05 0.175 0.9 0.172 1.0

Table – Numerical results (mean RMSE) for the reference ETKF-Q experiment with
five different ensemble sizes and a σQ = 0.1 model error. Only inflation is tuned.

♦ Latent ETKF-Q experiments with σQ = 0 for autoencoders and PCA :

ℓ = 10 ℓ = 30 ℓ = 100 ℓ = 200
Name

RMSE Infl. σQℓ
RMSE Infl. σQℓ

RMSE Infl. σQℓ
RMSE Infl. σQℓ

AE+Sur 0.312 0.8 0.1 0.117 0.8 0.01 0.072 0.8 0.01 0.0697 1.1 1e-3

PCA+Sur 0.396 1.05 10 0.226 0.8 1 0.0972 1.05 0.1 0.0805 1.1 0.01

Table – Numerical results (mean RMSE) for latent data assimilation algorithms. Two
parameters are tuned : inflation and σQℓ

.

➥ with both space reduction techniques (AE or PCA), we achieve better RMSE
scores than our reference ETKF-Q algorithm with model error.

➥ the piece-wise activation functions of the autoencoder have a stronger
compression capabality than PCA.
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Conclusions & Perspectives

♦ We propose a new latent-space DA methodology :

➤ explores the ability of deep learning to create a reduced space
➤ defines a stable surrogate network within the latent space to

perform model propagation
➤ train NN for dimension reduction and surrogate model together
➤ implements the ensemble DA within the learned reduced space.

♦ The latent space algorithm may improve the accuracy since the decoder is
a nonlinear transformation that fits the manifold where the state
trajectory statistically belong, when such a structure exists.

♦ The latent space algorithm may reduce the computational cost by
performing the minimization in a reduced space

♦ The proposed proof of concept is encouraging and quite general that can
be adapted to other DA methods.
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Thank you for your attention !
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