

Using GANs as multivariate weather generators

Clément Brochet ¹, Laure Raynaud ², Matthieu Plu ², Nicolas Thome ³, Clément Rambour ³ ¹CNRM/ENPC ²CNRM ³CNAM

November 16th, 2022

1. Weather generators

2. Dataset and problem

3. Some results and metrics

4. Discussion

Dataset and problem

Some results and metrics

Weather generators

Main purpose : enrich ensemble approaches

- Based on existing ensemble members...
- ... Generating new samples
- Ideas for ensemble forecast and DA

Dataset and problem

Some results and metrics

Weather generators

Main purpose : enrich ensemble approaches

- Based on existing ensemble members...
- ... Generating new samples
- Ideas for ensemble forecast and DA

Weather generators

- Having ability to sample complex distributions
- In high-dimensional spaces

GANs as distribution learners

Adversarial training :

- "Optimal transport" of distributions (WGAN, [2])
- D acts as distribution distance estimator
- Allows working in high-dimensional spaces (maps)

High-resolution, Multivariate emulation with GANs

Need for proof-of-concept

- Can we use GANs to sample the distribution of high-res, multivariate model outputs ?
- 2 How can we evaluate the quality of GANs samples ?
- Relatively few literature on high-resolution generation of atmospheric states ([10])
- We inspire from [3] generating global climate states

Some results and metrics

An AROME-EPS dataset

About AROME - EPS

- Convection-scale, NH-Model
- 1.3km grid-size resolution since 2022
- Dataset used :
 - 17 months of forecasts (1 per day)
 - 16 members for each forecast
 - Lead times up to 51h

Figure 1: The AROME domain ([4])

An AROME-EPS dataset

About AROME - EPS

- Convection-scale, NH-Model
- 1.3km grid-size resolution since 2022
- Dataset used :
 - 17 months of forecasts (1 per day)
 - 16 members for each forecast
 - Lead times up to 51h

We want our GAN to sample :

$$X_{GAN} = G(Z) \sim \mathbb{P}_{data} = \mathcal{U}(\mathcal{D})$$

Figure 2: The AROME domain ([4])

Dataset and problem 0000

Some results and metrics

Selected data

Learned and generated fields 10-m horizontal wind field : (u, v)2-m temperature : t_{2m} Joint generation !

Figure 3: Selected subdomain and its geographical features

GAN architecture and training

Figure 4: Generator (a) and Discriminator (b). From [8].

Dataset and problem

Some results and metrics

Results : samples

Dataset and problem

Some results and metrics

Consistency checks

Can the GAN reproduce simple statistical properties ?

Figure 6: Bivariate histograms for GAN (contours) and AROME-EPS (heatmap)

Dataset and probl

Some results and metrics

Consistency checks, 2 : spectra

Figure 7: Black : AROME-EPS mean spectrum, Dashed : AROME-EPS Q10-Q90, Red : GAN

Fit of spectra is excellent

Mean Power Spectral Density (PSD) error of order of 1dB.

Evaluation metrics, 1 : 1D-Wasserstein distances

Effect on pixels :

Similar to [3].

$$W_1(\mathbb{P},\mathbb{Q}) = \int_0^1 |F_{\mathbb{P}}^{-1}(t) - F_{\mathbb{Q}}^{-1}(t)|dt$$

Usage

- Easy to compute in 1D (not feasible in higher dimensions)
- Pixel-wise average of 1D-W₁ : a measure of distributional proximity

Average W1 = 14.6e-3

Evaluation metrics, 2 : multi-scale Wasserstein Distances From [6] and [9] : (Sliced Wasserstein Distance - SWD)

Figure 8: Multi-scale Wasserstein Distance

Metric	SWD_{128}	SWD_{64}	SWD_{32}	SWD_{16}
GAN	5.7	7.3	12	39
AROME*	1.5	1.5	1.6	4.6
* 11.				

*: Using a bootstrap technique

Pattern diversity

■ Fine scales (SWD₁₂₈) better than Large scales (SWD₁₆)

Evaluation metrics, 3 : correlation lengths

Fully local metric, following [11].

Figure 9: Length scales (color scale in km)

$$\rho(x,\delta x) = \langle X(x)X(x+\delta x)\rangle$$

$$L_{corr}(x) = \sqrt{\frac{1}{-\nabla^2 \rho(x,0)}}$$

Quality of correlations

- Correct over land
- Degraded over sea
- Border effects
- Checkerboard patterns

Dataset and probler 0000 Some results and metrics

Results from a parameter sweep

Figure 10: Training curves with increasing batch size, 32 (a) 64 (b) 128 (c) 256 (d). Blue : Discriminator loss; Red : Generator loss

Table 1: Average for 3 runs (lower is better)

Batch	W_1	PSD-error	SWD(avg)	$MAE(L_{corr})$
32	12	0.9	18	5.3
64	13	0.9	21	5.9
128	17	1.5	37	8.1
256	12	2.1	20	9.8
512	21	10.5	55	19.1

Increasing batch size

- Small effect on W₁
- Degrades spectra/SWD/L_{corr} severely
- Freezes training

What are we learning ?

- Correlation maps show border effects and worse scores on sea
- We are able to learn temperature correlation with altitude
- ... And we learn on a fixed domain

What are we learning ?

- Correlation maps show border effects and worse scores on sea
- We are able to learn temperature correlation with altitude
- 9 ... And we learn on a fixed domain

Absolute gridpoint position learning
Cf. literature ([1], [13], [12])
Padding in convolutions + surface fields

Some results and metrics

Position learning : consequences

Absolute gridpoint position learning

- Learning signal is mainly position-related
- 2 Transient features are smoothed out

Transient features

Weak signal

Position-dependent features

Some results and metrics

Position learning : consequences

Absolute gridpoint position learning

- Learning signal is mainly position-related
- ② Transient features are smoothed out

- Increasing batch size causes training curves to plateau
- Increasing batch size degrades spatial correlations but not grid-point error

Transient features

Weak signal

Position-dependent features

Conclusions

- GANs can generate high quality outputs of AROME-EPS model.
- **2** Multiplying meaningful metrics deepens diagnosis
- **Operation learning** acts as strong inductive bias

PERSPECTIVES :

- **O Conditioning is the next step** : Emulate ensemble diversity with situation-aware GANs
- **Organizations** : a non-gaussian irregular field with rare events.
- Towards SotA architectures : ProGAN, StyleGAN-2 are promising candidates to enchance quality

Backup

References I

- [1] Bilal Alsallakh et al. "Mind the Pad {CNN}s Can Develop Blind Spots". In: International Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=m1CD7tPubNy.
- [2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. "Wasserstein Generative Adversarial Networks". In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. Sydney, NSW, Australia: JMLR.org, 2017, pp. 214–223.
- C. Besombes et al. "Producing realistic climate data with generative adversarial networks". In: Nonlinear Processes in Geophysics 28.3 (2021), pp. 347-370. DOI: 10.5194/npg-28-347-2021. URL: https://npg.copernicus.org/articles/28/347/2021/.

References II

- [4] François Bouttier et al. "Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX". In: Quarterly Journal of the Royal Meteorological Society 142.S1 (2016), pp. 390-403. DOI: https://doi.org/10.1002/qj.2622. eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2622. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2622.
- [5] Sihao Cheng and Brice Ménard. How to quantify fields or textures? A guide to the scattering transform. 2021. DOI: 10.48550/ARXIV.2112.01288. URL: https://arxiv.org/abs/2112.01288.
- [6] Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. 2018. arXiv: 1710.10196 [cs.NE].
- [7] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. 2017. arXiv: 1705.02894 [stat.ML].

References III

- [8] Takeru Miyato et al. "Spectral Normalization for Generative Adversarial Networks". In: CoRR abs/1802.05957 (2018). arXiv: 1802.05957. URL: http://arxiv.org/abs/1802.05957.
- [9] Julien Rabin et al. "Wasserstein Barycenter and its Application to Texture Mixing". In: SSVM'11. Israel: Springer, 2011, pp. 435–446. URL: https://hal.archives-ouvertes.fr/hal-00476064.
- [10] S. Ravuri et al. "Skilful precipitation nowcasting using deep generative models of radar". In: Nature 597, 672-677 (2021) (2021), pp. 672-677. DOI: 10.1038/s41586-021-03854-z. URL: https://www.nature.com/articles/s41586-021-03854-z.

References IV

- [11] A. T. Weaver and I. Mirouze. "On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation". In: *Quarterly Journal* of the Royal Meteorological Society 139.670 (2013), pp. 242-260. DOI: https://doi.org/10.1002/qj.1955. eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.1955. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.1955.
- [12] Rui Xu et al. Positional Encoding as Spatial Inductive Bias in GANs. 2020. DOI: 10.48550/ARXIV.2012.05217. URL: https://arxiv.org/abs/2012.05217.
- [13] Richard Zhang. "Making Convolutional Networks Shift-Invariant Again". In: ICML. 2019.

And now for an open question...

Should GANs learn absolute position in weather datasets ? PROS :

- It seems useful and natural on aligned learning
- It definitely helps converging at first

CONS :

- It probably hampers convergence after a while
- It fails grasping transient structures

Does the GAN copy Dataset ?

"Raw MSE test" on normalized data.

Figure 11: Closest GAN vs AROME samples RMSE-wise

Figure 12: RMSE distribution to AROME samples

Evaluation metrics, 1 : 1D- Wasserstein distances

"Wasserstein Maps" during training (log scale)

Similar to Besombes et al., 2021.

$$W_1(\mathbb{P},\mathbb{Q}) = \int_0^1 |F_{\mathbb{P}}^{-1}(t) - F_{\mathbb{Q}}^{-1}(t)| dt$$

Takeaways

- GAN optimizes Wasserstein distance
- Dataset gridpoint variance acts as a strong error signal

Figure 13: Left : u, Center : v, Right : t_{2m} .

Multivariate experiments : "ablation" study

Configuration Baseline := $(u, v, t_{2m}) |t_{2m}| (u, v)$

Table 2: Sets of variables (fine-tuned parameters for each)

How does multivariate generation impact performance ?

- More variables add useful correlations
- Less variables simplify the dataset

Multivariate experiments : results

Config	W_1	Fine SWD	Large SWD	Spectra	L_{corr}	ARC
t_{2m}	1	~	1	1	\rightarrow	
t_{2m} , or og	1	\downarrow	1	\downarrow	\rightarrow	3/2
(u,v)	~	~	$\downarrow \downarrow$	1	$\uparrow\uparrow$	

Table 3: Effects on scores

Figure 14: Effect on wind module.

References

Spectral distributions

Spatial consistency : scattering analysis

Wavelet basis decomposition :

$$\psi_{\lambda}(\mathbf{x}) \propto \exp\left(-\frac{\lambda^{-2}\mathbf{x}^2}{2\sigma_x}\right) \left(e^{i\frac{x}{\lambda}} - \beta\right)$$

Scattering coefficients :

 $S_1(\lambda_1) = \langle |X \star \psi_{\lambda_1}| \rangle,$ $S_2(\lambda_1, \lambda_2) = \langle ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \rangle$

Figure 15: Scattering transform, order 2.

Offline analysis

Variations multi-échelles

Offline analysis We set (cf. [5]) :

$$s_{21} = \left\langle \frac{S_2(\lambda_1, \lambda_2)}{S_1(\lambda_1)} \right\rangle_{\theta_1, \theta_2}$$

(Averaging on directions)

Figure 16: Comparing AROME (red) and GAN (blue) - dashed lines are Q10-Q90.

Scattering : scores

Table 4: Average for 3 runs (lower is better)

Batch	W_1	PSD-error	SWD(avg)	$MAE(L_{corr})$	Scattering
32	12	0.9	18	5.3	3.9
64	13	0.9	21	5.9	3.9
128	17	1.5	37	8.1	4.2
256	12	2.1	20	9.8	5.2
512	21	10.5	55	19.1	8.2

Scattering scores evolve consistently with others.

A word about "Bootstrap"

$$W_1(\mathbb{P},\mathbb{Q}) = \inf_{\gamma \in \Pi(\mathbb{P},\mathbb{Q})} \int ||x-y|| \gamma(x,y) dx dy$$

Why bother ?

- Need for a lower bound on distance estimates
- Finite sampling effects must be quantified

Process :

- Select two random Batches of size *B* from \mathbb{P}_{data}
- Repeat N times with replacement and average over N

Parameters used :
$$B = 16384$$
, $N = 32$

Thanks for your attention

www.umr-cnrm.fr

www.meteofrance.com

