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Weather generators

Main purpose : enrich ensemble approaches
Based on existing ensemble members...
... Generating new samples
Ideas for ensemble forecast and DA
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Weather generators

Main purpose : enrich ensemble approaches
Based on existing ensemble members...
... Generating new samples
Ideas for ensemble forecast and DA

Weather generators
Having ability to sample complex distributions
In high-dimensional spaces
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GANs as distribution learners
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Adversarial training :
"Optimal transport" of
distributions (WGAN, [2])
D acts as distribution distance
estimator
Allows working in
high-dimensional spaces (maps)
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High-resolution, Multivariate emulation with GANs

Need for proof-of-concept
1 Can we use GANs to sample the distribution of high-res, multivariate model outputs ?
2 How can we evaluate the quality of GANs samples ?

Relatively few literature on high-resolution generation of atmospheric states ([10])
We inspire from [3] generating global climate states
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An AROME-EPS dataset

About AROME - EPS
Convection-scale, NH-Model
1.3km grid-size resolution since 2022
Dataset used :

17 months of forecasts (1 per day)
16 members for each forecast
Lead times up to 51h

Figure 1: The AROME domain ([4])

ECMWF-ESA Workshop – 7



Weather generators Dataset and problem Some results and metrics Discussion

An AROME-EPS dataset

About AROME - EPS
Convection-scale, NH-Model
1.3km grid-size resolution since 2022
Dataset used :

17 months of forecasts (1 per day)
16 members for each forecast
Lead times up to 51h

We want our GAN to sample :

XGAN = G(Z) ∼ Pdata = U(D) Figure 2: The AROME domain ([4])
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Selected data

Figure 3: Selected subdomain and its geographical features

Learned and generated
fields

10-m horizontal wind
field : (u, v)
2-m temperature : t2m

Joint generation !
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XGAN ∈ R3×128×128
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GAN architecture and training

Figure 4: Generator (a) and Discriminator (b). From [8].

Hinge Loss :
LD = ReLU (1 −D(X)) +
ReLU (1 +D(G(Z)))

Wasserstein GAN formulation
Hinge loss is ok ([7])
Spectral Normalization ([8])
On both G and D
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Results : samples

Figure 5: Some samples
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Consistency checks
Can the GAN reproduce simple statistical properties ?

Figure 6: Bivariate histograms for GAN (contours) and AROME-EPS (heatmap)
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Consistency checks, 2 : spectra

Figure 7: Black : AROME-EPS mean spectrum, Dashed : AROME-EPS Q10-Q90, Red : GAN

Fit of spectra is excellent
Mean Power Spectral Density (PSD) error of order of 1dB.
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Evaluation metrics, 1 : 1D-Wasserstein distances

Similar to [3].

W1(P,Q) = ∫
1

0
∣F−1

P (t) − F
−1
Q (t)∣dt

Usage
Easy to compute in 1D (not feasible in
higher dimensions)
Pixel-wise average of 1D-W1 : a measure
of distributional proximity

Effect on pixels :
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Evaluation metrics, 2 : multi-scale Wasserstein Distances
From [6] and [9] : (Sliced Wasserstein Distance - SWD)

Figure 8: Multi-scale Wasserstein Distance

Metric SWD128 SWD64 SWD32 SWD16
GAN 5.7 7.3 12 39

AROME* 1.5 1.5 1.6 4.6
*: Using a bootstrap technique

Pattern diversity
Fine scales (SWD128) better than Large scales (SWD16)
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Evaluation metrics, 3 : correlation lengths
Fully local metric, following [11].

Figure 9: Length scales (color scale in km)

ρ(x, δx) = ⟨X(x)X(x + δx)⟩

Lcorr(x) =

√
1

−∇2ρ(x,0)

Quality of correlations
Correct over land
Degraded over sea
Border effects
Checkerboard patterns
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Results from a parameter sweep

Figure 10: Training curves with increasing batch
size, 32 (a) 64 (b) 128 (c) 256 (d). Blue :
Discriminator loss; Red : Generator loss

Table 1: Average for 3 runs (lower is better)

Batch W1 PSD-error SWD(avg) MAE(Lcorr)
32 12 0.9 18 5.3
64 13 0.9 21 5.9
128 17 1.5 37 8.1
256 12 2.1 20 9.8
512 21 10.5 55 19.1

Increasing batch size
Small effect on W1

Degrades spectra/SWD/Lcorr severely
Freezes training
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What are we learning ?

1 Correlation maps show border effects
and worse scores on sea

2 We are able to learn temperature
correlation with altitude

3 ... And we learn on a fixed domain
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What are we learning ?

1 Correlation maps show border effects
and worse scores on sea

2 We are able to learn temperature
correlation with altitude

3 ... And we learn on a fixed domain

Absolute gridpoint position learning
1 Cf. literature ([1], [13], [12])
2 Padding in convolutions + surface fields
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Position learning : consequences

Absolute gridpoint position learning
1 Learning signal is mainly position-related
2 Transient features are smoothed out
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Position learning : consequences

Absolute gridpoint position learning
1 Learning signal is mainly position-related
2 Transient features are smoothed out

1 Increasing batch size causes training
curves to plateau

2 Increasing batch size degrades spatial
correlations but not grid-point error
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Conclusions
1 GANs can generate high quality outputs of AROME-EPS model.
2 Multiplying meaningful metrics deepens diagnosis
3 Position learning acts as strong inductive bias

PERSPECTIVES :

1 Conditioning is the next step : Emulate ensemble diversity with situation-aware GANs
2 Add precipitations : a non-gaussian irregular field with rare events.
3 Towards SotA architectures : ProGAN, StyleGAN-2 are promising candidates to

enchance quality

Thank you !
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And now for an open question...

Should GANs learn absolute position in weather datasets ?
PROS :

1 It seems useful and natural on aligned learning
2 It definitely helps converging at first

CONS :

1 It probably hampers convergence after a while
2 It fails grasping transient structures
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Does the GAN copy Dataset ?

"Raw MSE test" on normalized data.

Figure 11: Closest GAN vs AROME samples
RMSE-wise

Figure 12: RMSE distribution to AROME samples
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Evaluation metrics, 1 : 1D- Wasserstein distances

Similar to Besombes et al., 2021.

W1(P,Q) = ∫
1

0
∣F−1

P (t) − F
−1
Q (t)∣dt

Takeaways
GAN optimizes Wasserstein distance
Dataset gridpoint variance acts as a
strong error signal

"Wasserstein Maps" during training (log scale)

Figure 13: Left : u, Center : v, Right : t2m.
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Multivariate experiments : "ablation" study

Configuration Baseline := (u, v, t2m) t2m (u, v)

Table 2: Sets of variables (fine-tuned parameters for each)

How does multivariate generation impact performance ?
More variables add useful correlations
Less variables simplify the dataset
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Multivariate experiments : results

Config W1 Fine SWD Large SWD Spectra Lcorr

t2m ↑ ∼ ↑ ↑ ↓

t2m,orog ↑ ↓ ↑ ↓ ↓

(u, v) ∼ ∼ ↓ ↓ ↑ ↑ ↑

Table 3: Effects on scores

Figure 14: Effect on wind module.
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Spectral distributions
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Spatial consistency : scattering analysis

Wavelet basis decomposition :

ψλ(x) ∝ exp(−λ
−2x2

2σx
)(ei x

λ − β)

Scattering coefficients :

S1(λ1) = ⟨∣X ⋆ ψλ1 ∣⟩ ,

S2(λ1, λ2) = ⟨∣∣X ⋆ ψλ1 ∣ ⋆ ψλ2 ∣⟩ Figure 15: Scattering transform, order 2.
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Offline analysis
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Offline analysis
We set (cf. [5]) :

s21 = ⟨
S2(λ1, λ2)

S1(λ1)
⟩

θ1,θ2

(Averaging on directions)

Figure 16: Comparing AROME (red) and GAN (blue) - dashed lines are Q10-Q90.

Is it a good metric ?
Shows discrepancy whereas spectrum is perfectly fit → more hinsight into field structuration
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Scattering : scores

Table 4: Average for 3 runs (lower is better)

Batch W1 PSD-error SWD(avg) MAE(Lcorr) Scattering
32 12 0.9 18 5.3 3.9
64 13 0.9 21 5.9 3.9
128 17 1.5 37 8.1 4.2
256 12 2.1 20 9.8 5.2
512 21 10.5 55 19.1 8.2

Scattering scores evolve consistently with others.
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A word about "Bootstrap"

W1(P,Q) = inf
γ∈Π(P,Q)∫

∥x − y∥γ(x, y)dxdy

Why bother ?
Need for a lower bound
on distance estimates
Finite sampling effects
must be quantified

Process :
Select two random Batches of
size B from Pdata

Compute an estimate
Ŵ1(P1 ♯B,P2 ♯B)
Repeat N times with
replacement and average over N

Parameters used : B = 16384, N = 32
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Thanks for your attention
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