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The explainability crisis 
AlphaZero openings played over training time



And it gets worse 
Real-world data is infinitely more difficult
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[Runge et al., 2019]



Machine learning applications are often 
at odds with the #1 goal of science:



DISCOVERY

Machine learning applications are often 
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A different guiding principle
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parsimony
/ˈpɑːsɪməni/

noun
noun: parsimony
1. extreme unwillingness to spend money or use resources.

Occam's razor 

Occam's razor, Ockham's razor, or Ocham's razor, also 
known as the principle of parsimony or the law of 
parsimony, is the problem-solving principle that "entities 
should not be multiplied beyond necessity".

δ∫
t2

t1

L(q, ·q, t) dt = 0

Fundamental in nature

Principle of least action  
→ Lagrangian mechanics

Pillar of the scientific method



Let’s reboot
Can we discover something from data with 

parsimony-guided machine learning? 



Rogue waves 
Definition
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Wave height distribution
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Wave height distribution

(tail shape unknown)
Everything in here



Rogue waves 
Definition
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Wave height distribution

(tail shape unknown)
Everything in here

Binary classification
P(H/Hs > 2 ∣ x)

Forecastable sea state 
parameters

Find



Current wave theory is messy 
Occurrence probability depending on sea state
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P(H/Hs > h) =
1 + r

2r (1 +
1 − r2

64rh2 )exp( −
4

1 + r
h2)

Linear (bandwidth) effects

Non-linear effects on envelope

depend on R, kD, eps, …

+ other effects unaccounted for by current theory



Goal 
Find approximately causal predictive model
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So we can… 

(I) Understand the generation mechanisms of real-world rogue waves 

(II) Provide a better forecast



An ocean of data 
Observations from CDIP buoys

158 locations 
270 GB raw data 

750 years of time series 
1.28 Hz sampling frequency



FOWD 
The free ocean wave dataset

Wave parameters

Sea state parameters

Wave history Wave

Source: CDIP

Elevation time series

Wave spectrum

Wave buoy

{
    "start_time": 1782.8125,
    "end_time": 1800.0,
    "id_local": 0.0,
    "zero_crossing_period": 16.4193,
    "zero_crossing_wavelength": 418.8372,
    "maximum_elevation_slope": 0.768,
    "crest_height": 1.22,
    "trough_depth": -1.31,
    "height": 2.53,
    "ursell_number": 0.0555,
    "raw_elevation": [
        0.41,
        0.65,
        0.63,
        0.87,
        1.22,
        1.13,
        0.99,
        0.93,
        0.6,
        0.1,
        -0.37,
        -0.55,
        -0.45,
        -0.94,
        -0.93,
        -1.2,
        -1.31,
        -0.52,
        -0.32,
        -0.16,
        -0.06
    ]
}

{
    "start_time": 0.0,
    "end_time": 1829.6875,
    "significant_wave_height_direct": 1.0925,
    "significant_wave_height_spectral": 1.1734,
    "mean_period_direct": 7.7227,
    "mean_period_spectral": 6.3043,
    "maximum_wave_height": 2.12,
    "rel_maximum_wave_height": 1.8067,
    "skewness": 0.0495,
    "kurtosis": 0.2568,
    "valid_data_ratio": 1.0,
    "peak_wave_period": 15.8922,
    "peak_wavelength": 393.0131,
    "steepness": 0.0066,
    "bandwidth_peakedness": 0.1962,
    "bandwidth_narrowness": 0.905,
    "benjamin_feir_index_peakedness": 0.0254,
    "benjamin_feir_index_narrowness": 0.0055,
    "crest_trough_correlation": 0.699,

    "energy_in_frequency_interval": [
        10.4343,
        633.7447,
        120.9921,
        99.3144,
        244.8272
    ],
    "rel_energy_in_frequency_interval": [
        0.0121,
        0.7331,
        0.14,
        0.1149,
        0.2832
    ]
}

x 3 000 000 000
(1.5TB output data)

features

labels

[Häfner et al., 2021]



Step 1: Write down causal graph 
Make assumptions explicit, reduce dimensionality
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Step 2: Train neural network 
On different subsets of causal features
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Step 2: Train neural network 
On different subsets of causal features
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Step 3: Find causally consistent network 
Idea: Causal models are invariant under data shift
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Measure how much 
predictions change 
after re-training on 

subsets
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The role of parsimony (I) 
Model selection
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Causal invariance error

Best

Pareto front

10 best models 
10 worst models 

All others 
(by test error on unseen data)



Step 4: Analyze selected model 
With your favorite interpretable ML methods
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Next step 
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P(H/Hs > κ ∣ r, ε, R, kD) = . . .



Next step 

17

DISCOVERY
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The role of parsimony (II) 
Distillation through symbolic regression
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The role of parsimony (II) 
Distillation through symbolic regression



DISCOVERY



DISCOVERY
P(H > 2HS) =

1

σ
exp [3.82r − 12.04 − ε ⋅ (− 65.92ε + 1/ε +

0.23
kD ⋅ ν )]



DISCOVERY
P(H > 2HS) =

1

σ
exp [3.82r − 12.04 − ε ⋅ (− 65.92ε + 1/ε +

0.23
kD ⋅ ν )]

Approx. first-order expansion 
of Tayfun distribution

∼ exp[ −
16

1 + r ]
= 4r − 12 + 𝒪(r2)

Nonsensical (?) 
σ can be 0 in theory 

observed values ~ (0.2, 1.0) 
→ minor correction

ε/(kD) ≡ HS /D
Governing nonlinear 

parameter in shallow-water 
expansion. 

Wave-induced current?

Weakly nonlinear 
contribution (pos.)

Wave breaking? (neg.)

Some terms we understand already, some are explainable, some questionable.



The funnel 
From data to science

Raw data

Causal feature selection

Black-box 
regression

Symbolic 
expression

Discovery

1 TB

10 GB

10 MB

Aggregated data

1 GB

~1 kB
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A call to action 
What we need:
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(i) Incentives and best practices for 
open data 

(ii) Fast, interpretable methods for 
probabilistic reasoning 

(iii) Off-the-shelf causal methods and 
education on causal analysis 

(iv) Prioritizing discovery over 
accuracy


