

Occam's Machete

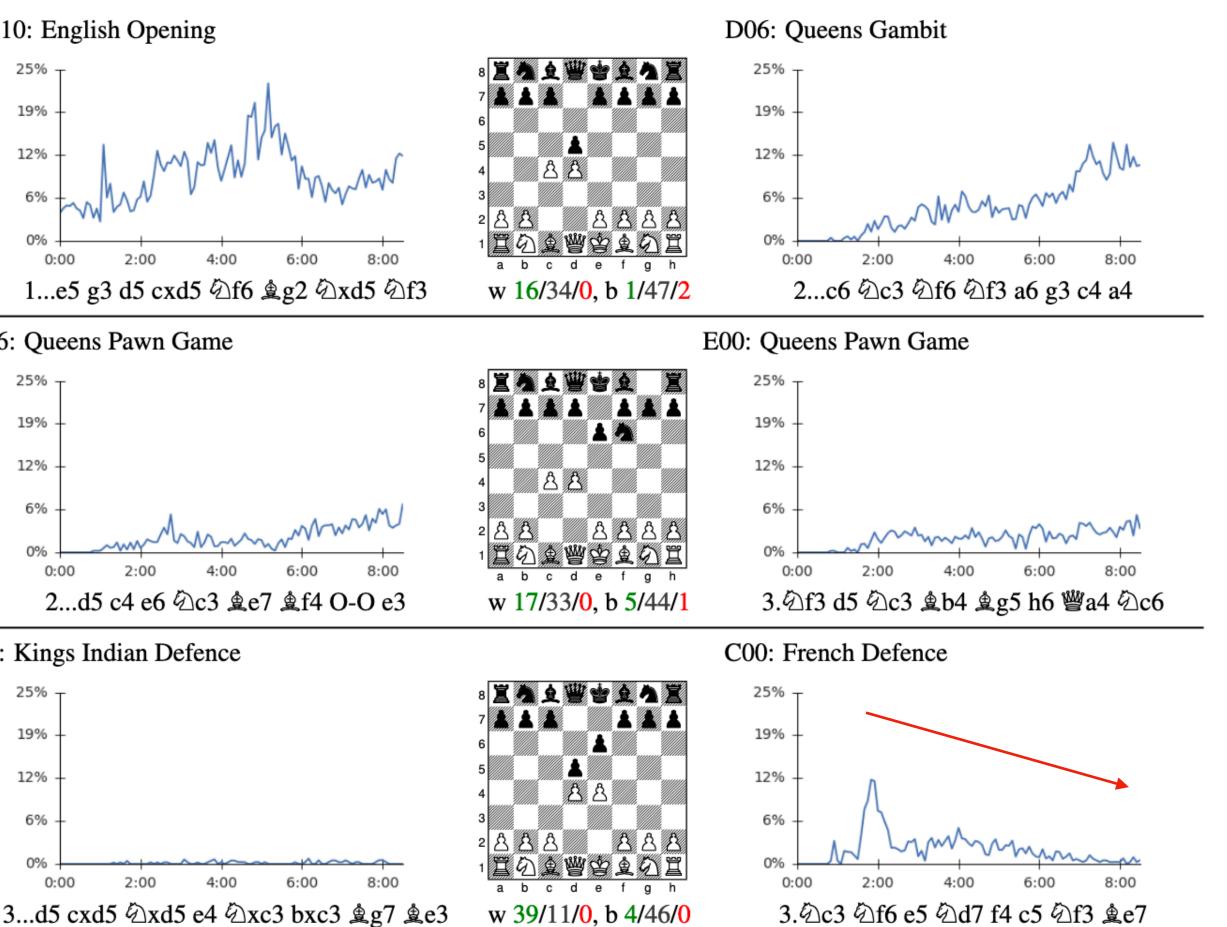
Data-driven discovery with parsimony and causal invariance

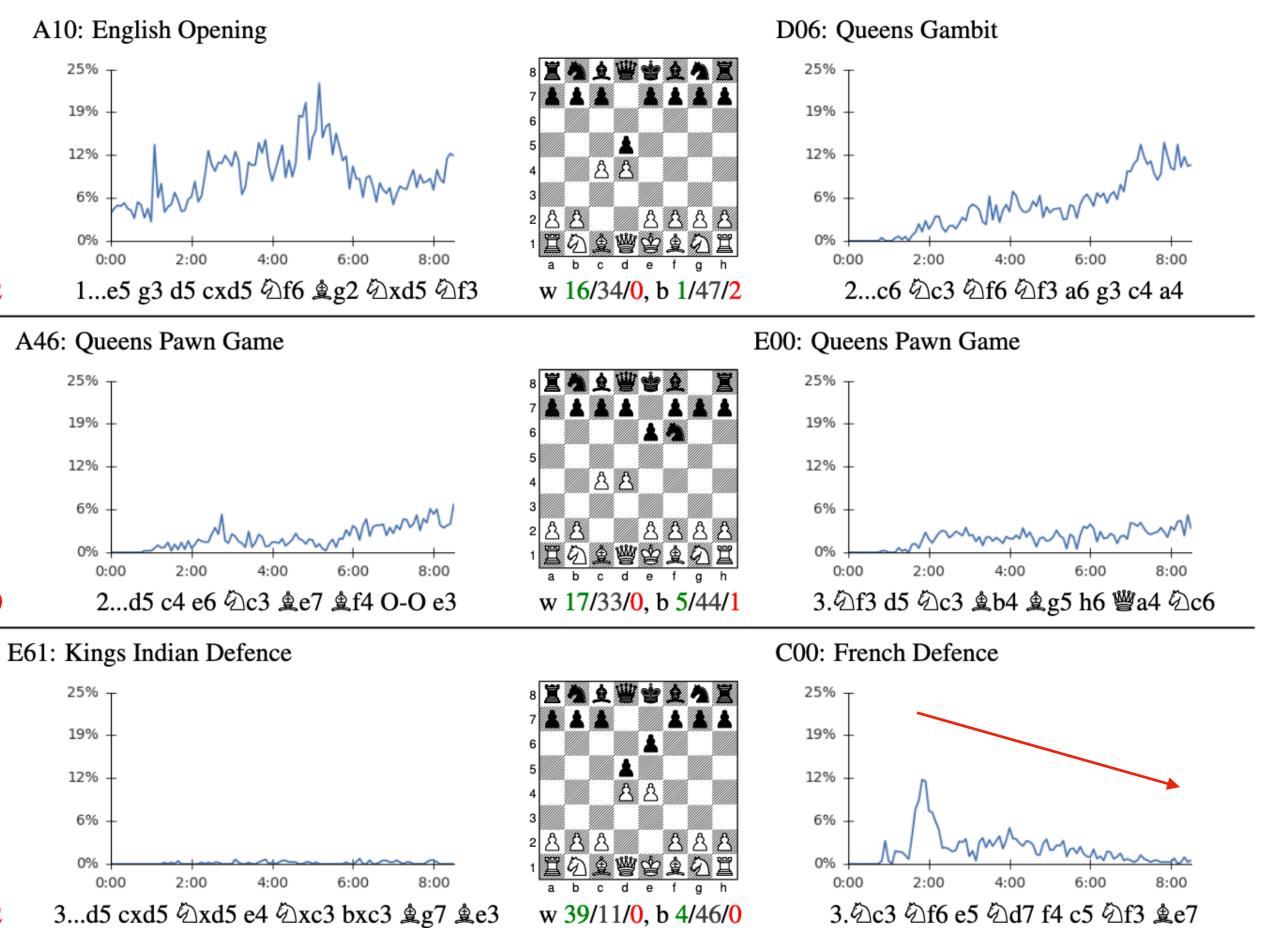
dion.haefner@simulation.science (1) Pasteur Labs & Institute for Simulation Intelligence (2) Niels Bohr Institute, University of Copenhagen

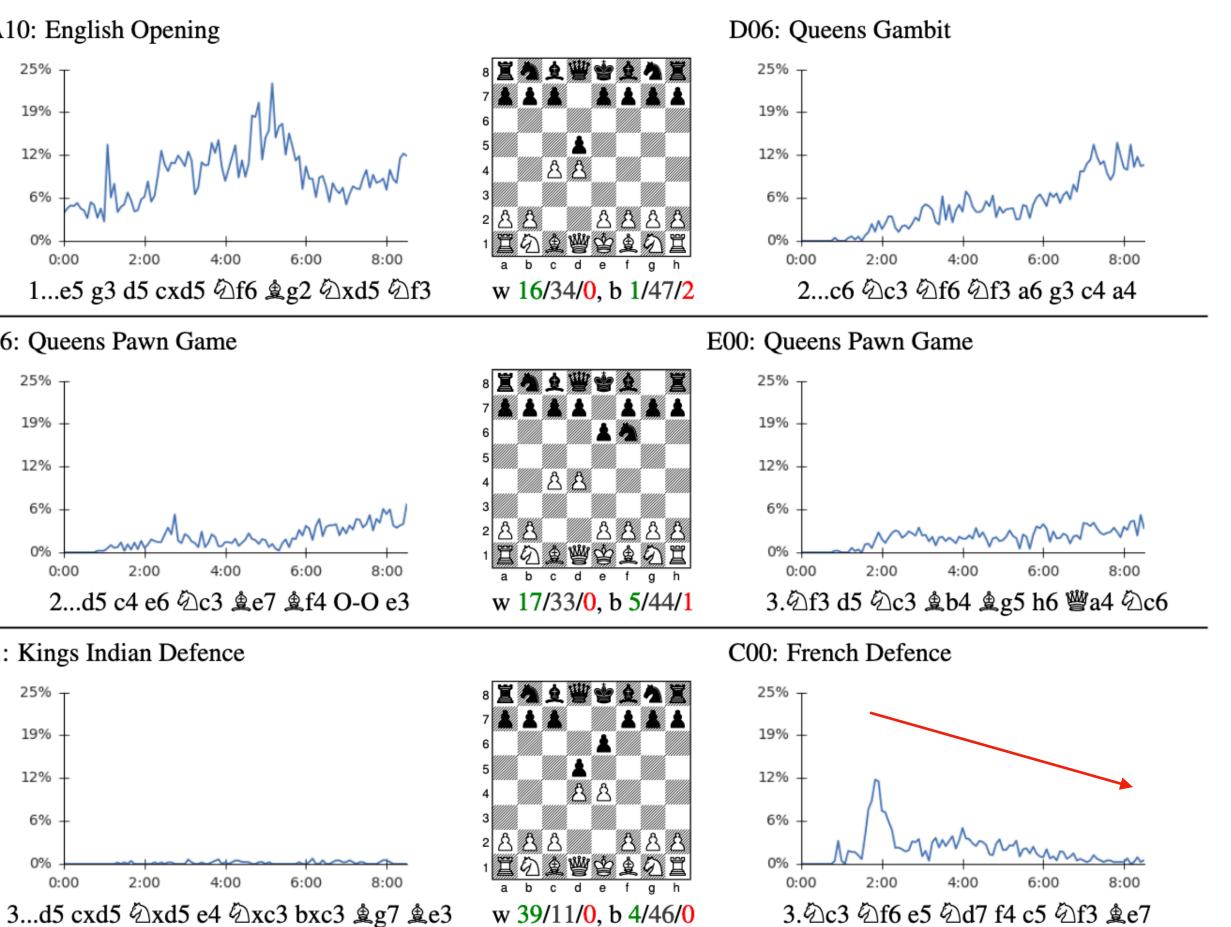
Dion Häfner

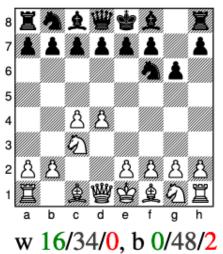
The explainability crisis AlphaZero openings played over training time

fgh w 20/30/0, b 8/40/2









w 24/26/0, b 3/47/0

And it gets worse Real-world data is infinitely more difficult

8

5

U

7

MILLI IL IL

Challenges

Process:

- 1 Autocorrelation
- 2 Time delays
- 3 Nonlinear dependencies
- Chaotic state-dependence
- 5 Different time scales
- 6 Noise distributions

Data:

- 7 Variable extraction
- 8 Unobserved variables
- 9 Time subsampling
- 10 Time aggregation
- 11 Measurement errors
- 12 Selection bias
- 13 Discrete data
- 14 Dating uncertainties

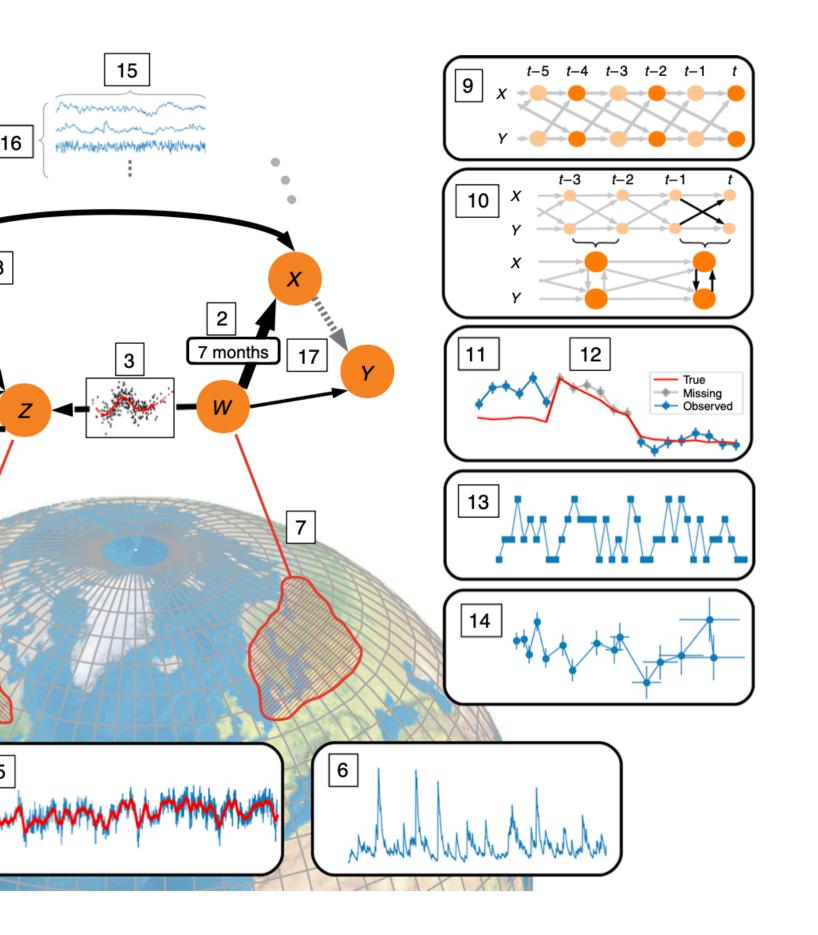
Computational/statistical:

- 15 Sample size
- 16 High dimensionality

4

al titul l

17 Uncertainty estimation



[[]Runge et al., 2019]

Machine learning applications are often at odds with the #1 goal of science:

Machine learning applications are often at odds with the #1 goal of science:

A different guiding principle

parsimony /'pɑɪsɪməni/

*noun*noun: **parsimony**1. extreme unwillingness to spend money or use resources.

Fundamental in nature

$$\delta \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) \, \mathrm{d}t = 0$$

Principle of least action → Lagrangian mechanics

Pillar of the scientific method

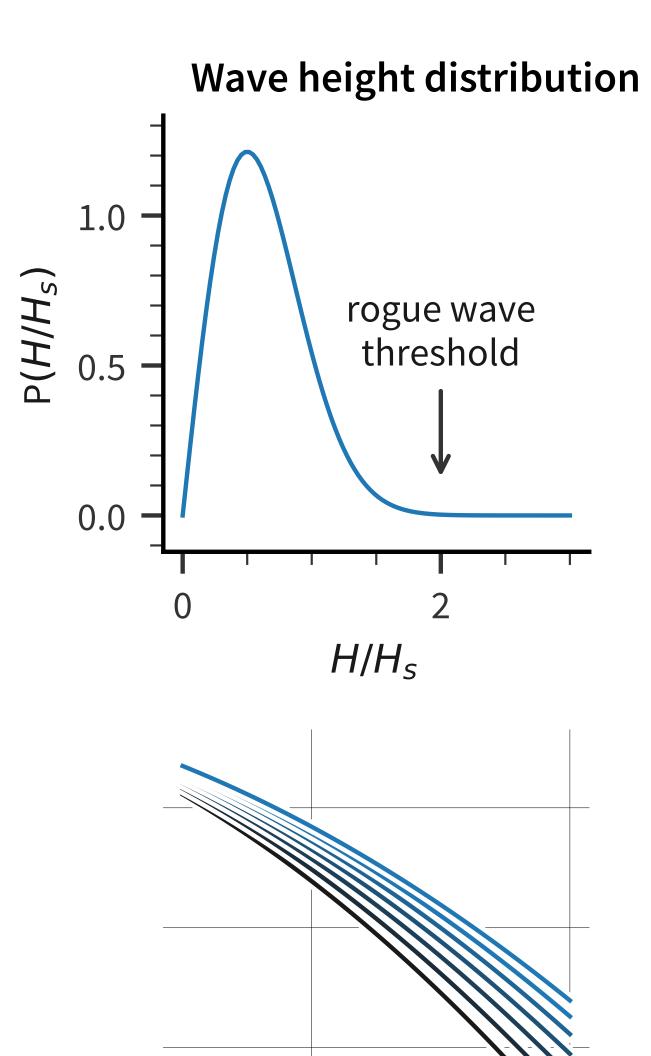
Occam's razor

Occam's razor, Ockham's razor, or Ocham's razor, also known as the principle of *parsimony* or the law of parsimony, is the problem-solving principle that "entities should not be multiplied beyond necessity".

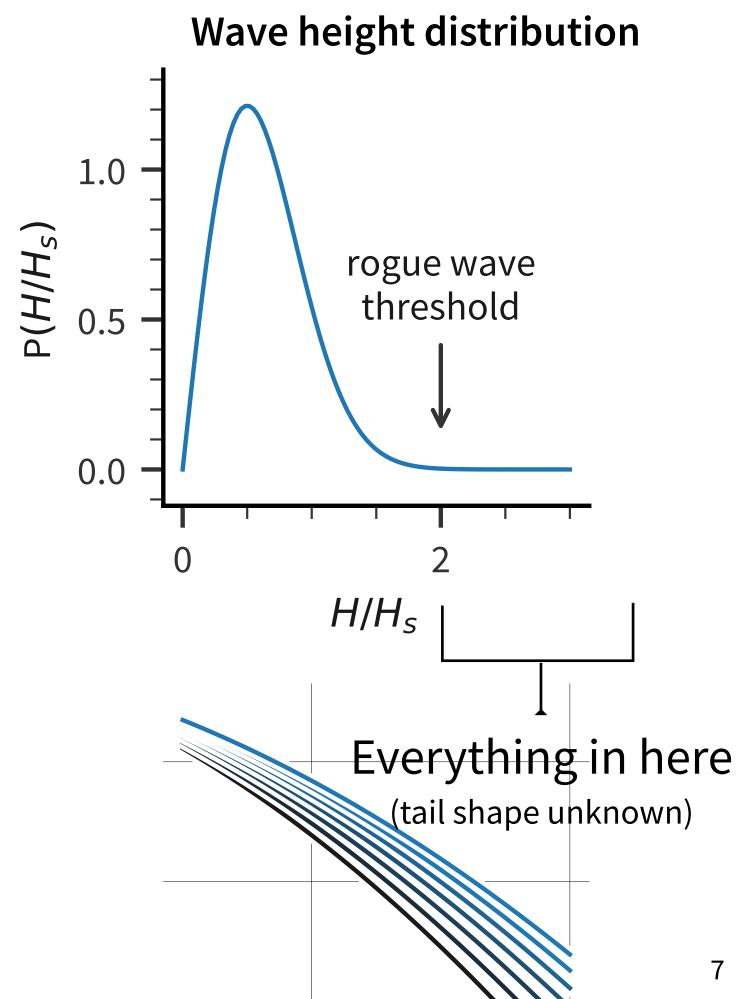
Let's reboot

Can we discover something from data with parsimony-guided machine learning?

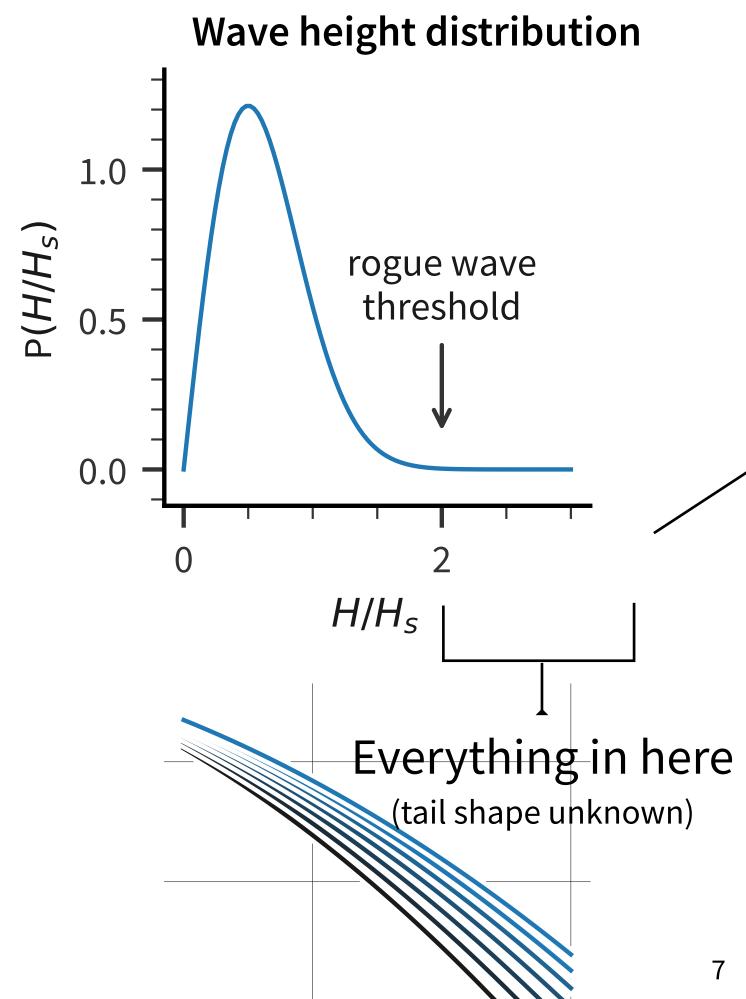
Rogue waves Definition



Rogue waves Definition



Rogue waves Definition



Binary classification Find $P(H/H_s > 2 | \mathbf{x})$

Forecastable sea state parameters

Current wave theory is messy Occurrence probability depending on sea state

Non-linear effects on envelope

 $p(h) = 4he^{-2h^2} \left\{ 1 + C_4 \left(2h^4 - 4h^2 + 1 \right) + C_3^2 \left(4h^6 - 18h^4 + 18h^2 + 18h^2$

depend on R, kD, eps, ...

Linear (bandwidth) effects $P(H/H_s > h) = \sqrt{\frac{1+r}{2r}} \left(1 + \frac{1-r^2}{64rh^2}\right) \exp\left(-\frac{4}{1+r}h^2\right)$

$$-3\bigr)\bigr\}$$

+ other effects unaccounted for by current theory

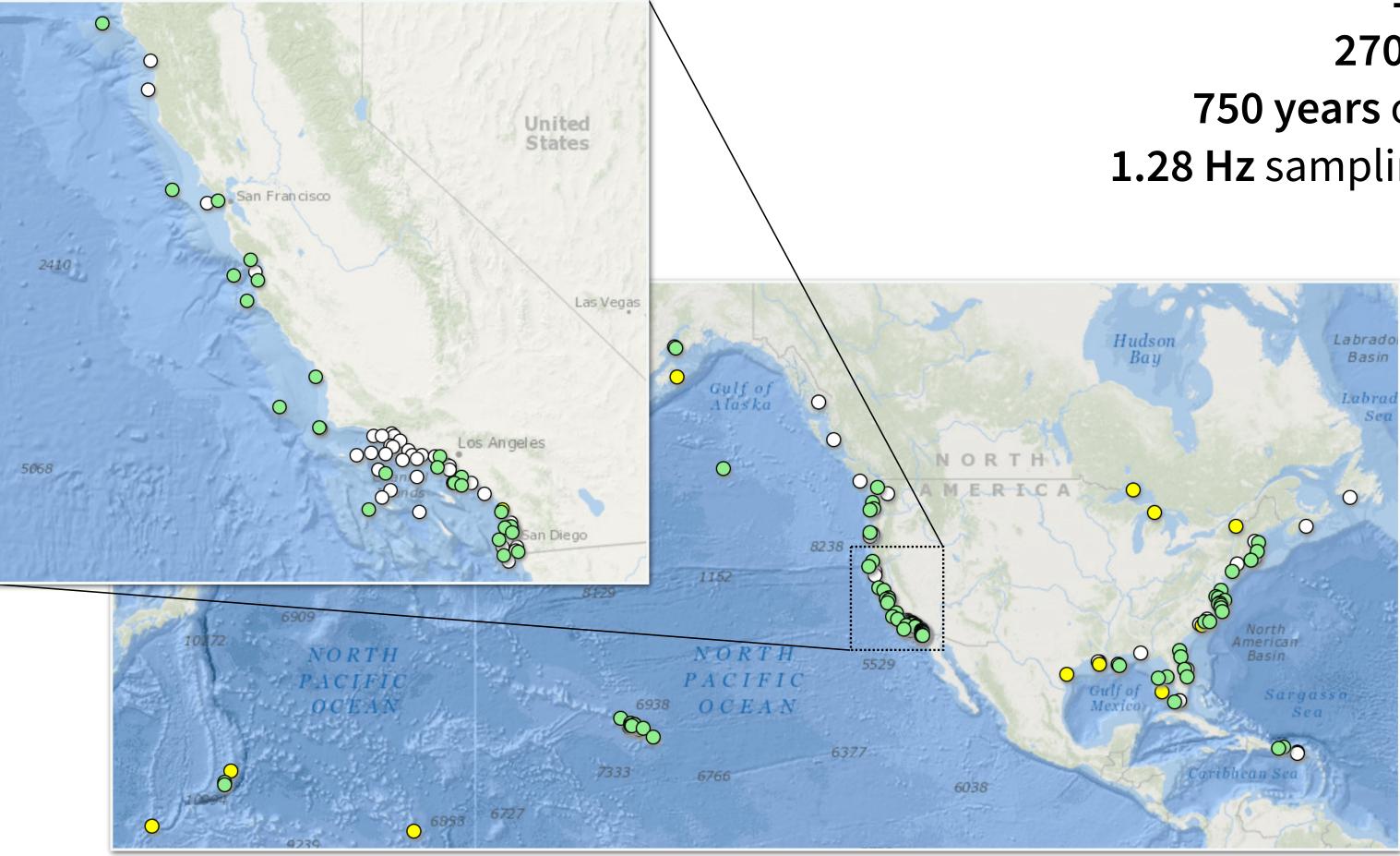
Goal Find approximately causal predictive model

So we can...

(I) Understand the generation mechanisms of real-world rogue waves

(II) Provide a better forecast

An ocean of data Observations from CDIP buoys



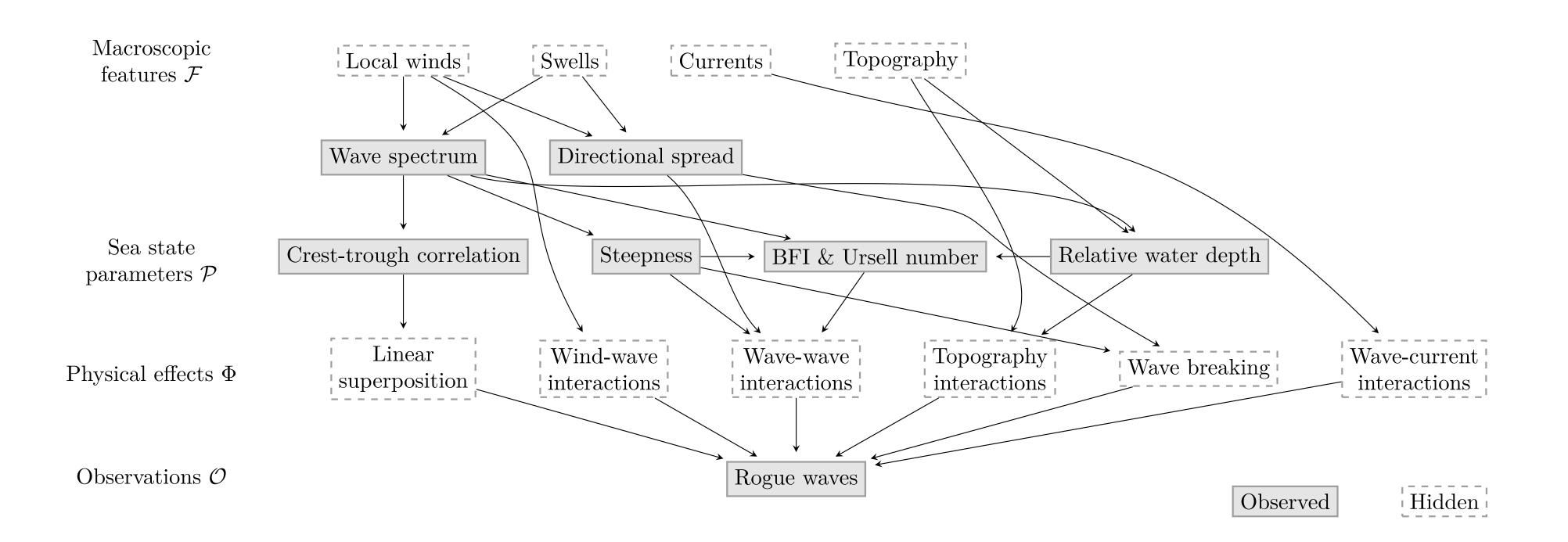
158 locations 270 GB raw data 750 years of time series 1.28 Hz sampling frequency

FOWD The free ocean wave data



[Häfner et al., 2021]

Step 1: Write down causal graph Make assumptions explicit, reduce dimensionality



Step 2: Train neural network On different subsets of causal features

IDEA

Parameterize rogue wave probability as

 $\log P(h > 2H_s) \sim \underbrace{f_1(r)}_{\text{linear}} + \underbrace{f_2(\text{BFI}, R)}_{\text{free waves}} + \underbrace{f_3(\varepsilon, kD)}_{\text{bound waves}} + \dots$

where f_i are neural networks.

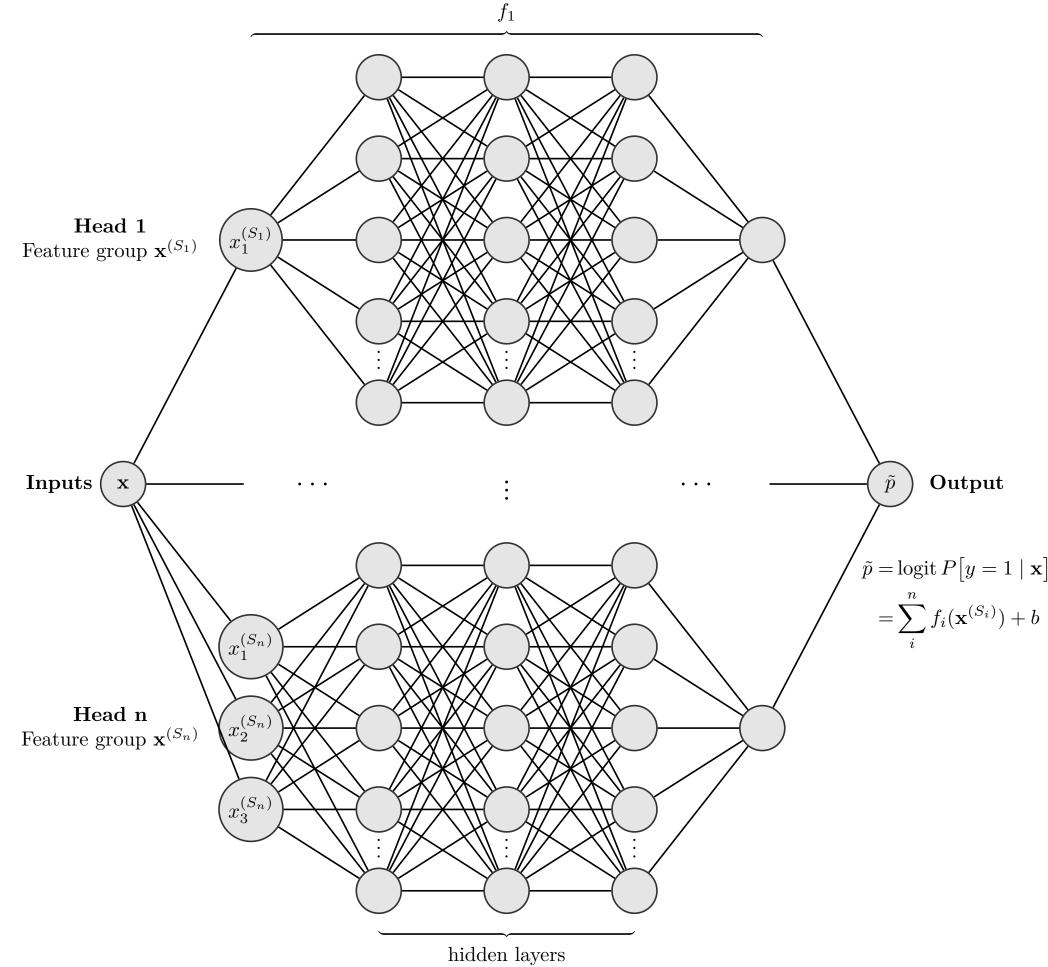
Step 2: Train neural network On different subsets of causal features

IDEA

Parameterize rogue wave probability as

 $\log P(h > 2H_s) \sim \underbrace{f_1(r)}_{\text{linear}} + \underbrace{f_2(\text{BFI}, R)}_{\text{free waves}} + \underbrace{f_3(\varepsilon, kD)}_{\text{bound waves}} + \dots$

where f_i are neural networks.



Step 3: Find causally consistent network Idea: Causal models are invariant under data shift

Subset name	Condition	# waves
southern-california	Longitude $\in (-123.5, -117)^{\circ}$, Latitude $\in (32, 38)^{\circ}$	233M
deep-stations	Water depth $> 1000 \mathrm{m}$	33M
shallow-stations	Water depth $< 100 \mathrm{m}$	138M
summer	Day of year \in (160, 220)	44M
winter	Day of year $\in (0, 60)$	88M
Hs > 3m	$H_s > 3 \mathrm{m}$	55M
high-frequency	Relative swell energy < 0.15	40M
low-frequency	Relative swell energy > 0.7	42M
long-period	Mean zero-crossing period > 9 s	40M
short-period	Mean zero-crossing period < 6s	90M
cnoidal	Ursell number > 8	34M
weakly-nonlinear	Steepness > 0.04	80M
spectral-narrow	Directionality index < 0.3	68M
spectral-wide	Directionality index > 1	37M
full	(all validation data)	438M

TABLE 1. The subsets of the validation data set used to evaluate model invariance.

> Measure how much predictions change after re-training on subsets

Step 3: Find causally consistent network Idea: Causal models are invariant under data shift

Subset name	Condition	# waves
southern-california	Longitude $\in (-123.5, -117)^{\circ}$, Latitude $\in (32, 38)^{\circ}$	233M
deep-stations	Water depth $> 1000 \mathrm{m}$	33M
shallow-stations	Water depth $< 100 \mathrm{m}$	138M
summer	Day of year \in (160, 220)	44M
winter	Day of year $\in (0, 60)$	88M
Hs > 3m	$H_s > 3 \mathrm{m}$	55M
high-frequency	Relative swell energy < 0.15	40M
low-frequency	Relative swell energy > 0.7	42M
long-period	Mean zero-crossing period > 9 s	40M
short-period	Mean zero-crossing period < 6s	90M
cnoidal	Ursell number > 8	34M
weakly-nonlinear	Steepness > 0.04	80M
spectral-narrow	Directionality index < 0.3	68M
spectral-wide	Directionality index > 1	37M
full	(all validation data)	438M

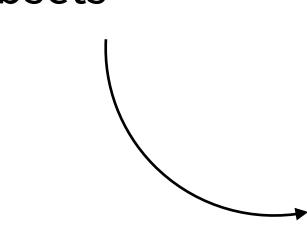
TABLE 1. The subsets of the validation data set used to evaluate model invariance.

> Measure predicti after re

TABLE 2. Full list of experiments. L: Prediction score (higher is better). E: Invariance error (lower is better). C: Calibration error (lower is better). Color coding ranges between (median - IQR, median + IQR) with inter-quartile range IQR.

Scores Feature groups ID 1 $\mathbf{2}$ $\mathcal{L} \times 10^4$ $\mathcal{E} \times 10^2$ $\mathcal{C} \times 10^2$ $1 \{r\}$ 8.526.90 4.62 $2 \quad \{r,\,R\}$ 8.585.053.86 $3 \quad \{\varepsilon, \widetilde{D}, R\}$ 0.03 22.596.214 $\{r, \widetilde{D}, R\}$ 5.567.954.345 $\{r, \varepsilon, R\}$ 8.833.835.496 $\{r, \varepsilon, \widetilde{D}\}$ 7.05 5.358.89 $\{\varepsilon, \widetilde{D}\}$ 7 $\{r, R\}$ 5.779.194.468 $\{r, R, \mathrm{Ur}\}$ 5.707.993.949 $\{r, R\}$ $\{\mathrm{Ur}, R\}$ 5.647.494.3110 $\{r, R, BFI\}$ 7.755.604.5111 $\{r, R\}$ $\{BFI, R\}$ 5.468.204.44 $\{\varepsilon, \widetilde{D}, R\}$ 12 $\{r\}$ 5.679.244.67 $\{\varepsilon,\,\widetilde{D},\,R\}$ 13 $\{\sigma_f\}$ 4.11 12.166.30 $\{arepsilon,\,\widetilde{D}\}$ 14 $\{r\}$ $\{BFI, R\}$ 5.649.776.02 $\{\varepsilon,\,\widetilde{D},\,\sigma_{ heta}\}$ 15 $\{r, R\}$ 10.635.206.22 $\{\varepsilon,\,\widetilde{D},\,R\}$ 8.633.6216 $\{r, R\}$ 5.8717 $\{r, \varepsilon, \widetilde{D}, R\}$ 5.988.60 -2.96 $\{BFI, \sigma_f, \sigma_\theta\}$ 18 $\{r\}$ $\{\varepsilon, \widetilde{D}\}$ 11.106.01 8.43 19 { $r, \varepsilon, \widetilde{D}, \sigma_{\theta}$ } 6.459.715.9720 $\{r, \varepsilon, \widetilde{D}, R, E_h\}$ 6.10 9.145.33 $\{r, \varepsilon, \widetilde{D}, \sigma_{\theta}, \nu\}$ 10.044.006.31 $\{r, \varepsilon, \widetilde{D}, R, BFI\}$ 8.846.816.0523 $\{r, \varepsilon, \widetilde{D}, \sigma_{\theta}, \sigma_{f}, E_{h},$ 3.686.91 12.69BFI, R} 24 $\{r, \varepsilon, D, \sigma_{\theta}, \sigma_{f}, E_{h},$ 6.70 56.44-7.27 $H_s, \overline{T}, \kappa, \mu, \lambda_p$

ure how much
ctions change
re-training on
subsets



	7015		
r	Crest-trough correlation	ν	Spectral bandwidth (narrowness)
σ_{f}	Spectral bandwidth (peakedness)	$\sigma_{ heta}$	Directional spread
ε	Peak steepness $H_s k_p$	R	Directionality index $\sigma_{\theta}^2/(2\nu^2)$
BFI	Benjamin-Feir index	\widetilde{D}	Relative peak water depth $Dk_p/(2\pi)$
E_h	Relative high-frequency energy	\mathbf{Ur}	Ursell number
\overline{T}	Mean period	κ	Kurtosis
μ	Skewness	H_s	Significant wave height

Step 3: Find causally consistent network Idea: Causal models are invariant under data shift

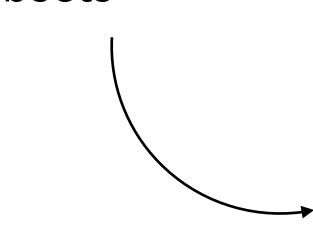
Subset name	Condition	# waves
southern-california	Longitude $\in (-123.5, -117)^{\circ}$, Latitude $\in (32, 38)^{\circ}$	233M
deep-stations	Water depth $> 1000 \mathrm{m}$	33M
shallow-stations	Water depth $< 100 \mathrm{m}$	138M
summer	Day of year \in (160, 220)	44M
winter	Day of year $\in (0, 60)$	88M
Hs > 3m	$H_s > 3 \mathrm{m}$	55M
high-frequency	Relative swell energy < 0.15	40M
low-frequency	Relative swell energy > 0.7	42M
long-period	Mean zero-crossing period > 9 s	40M
short-period	Mean zero-crossing period < 6s	90M
cnoidal	Ursell number > 8	34M
weakly-nonlinear	Steepness > 0.04	80M
spectral-narrow	Directionality index < 0.3	68M
spectral-wide	Directionality index > 1	37M
full	(all validation data)	438M

TABLE 1. The subsets of the validation data set used to evaluate model invariance.

TABLE 2. Full list of experiments. L: Prediction score (higher is better). E: Invariance error (lower is better). C: Calibration error (lower is better). Color coding ranges between (median - IQR, median + IQR) with inter-quartile range IQR.

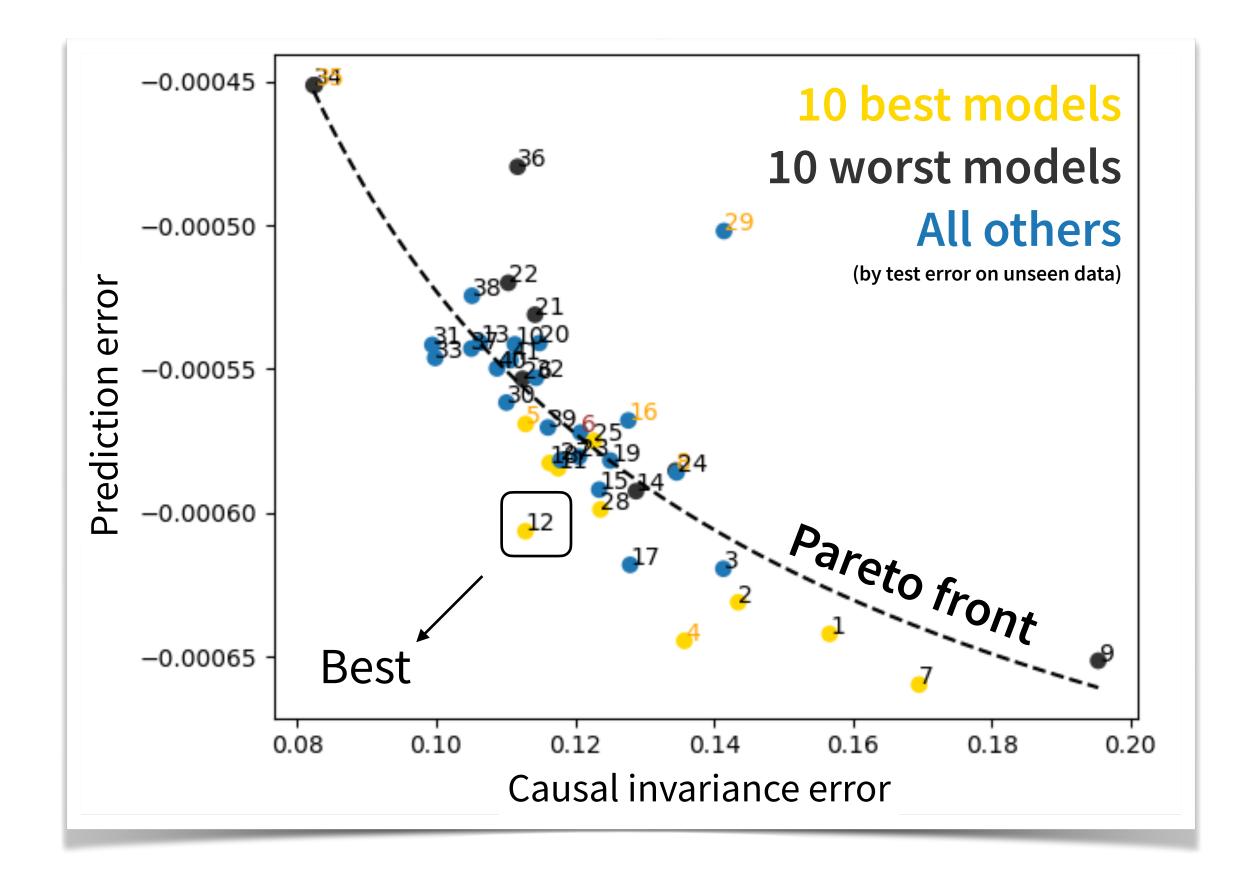
Scores Feature groups ID 1 $\mathbf{2}$ $\mathcal{L} \times 10^4$ $\mathcal{E} \times 10^2$ $\mathcal{C} \times 10^2$ $1 \{r\}$ 8.526.90 4.62 $2 \{r, R\}$ 8.585.053.863 $\{\varepsilon, \widetilde{D}, R\}$ 0.03 22.596.214 $\{r, \widetilde{D}, R\}$ 5.567.954.345 $\{r, \varepsilon, R\}$ 8.833.835.496 $\{r, \varepsilon, \widetilde{D}\}$ -7.055.358.89 $\{\varepsilon, \widetilde{D}\}$ 7 $\{r, R\}$ 5.779.194.468 $\{r, R, Ur\}$ 5.707.993.949 $\{r, R\}$ $\{\mathrm{Ur}, R\}$ 5.647.494.3110 $\{r, R, BFI\}$ 7.755.604.5111 $\{r, R\}$ $\{BFI, R\}$ 5.468.204.44 $\{\varepsilon, \widetilde{D}, R\}$ 12 $\{r\}$ 5.679.244.67 $\{\varepsilon, \, \widetilde{D}, \, R\}$ 13 $\{\sigma_f\}$ 4.11 12.166.30 $\{arepsilon,\,\widetilde{D}\}$ 14 $\{r\}$ $\{BFI, R\}$ 5.649.776.02 $\{\varepsilon, \widetilde{D}, \sigma_{\theta}\}$ 15 $\{r, R\}$ $\{\varepsilon, \widetilde{D}, R\}$ 16 $\{r, R\}$ 8.635.873.6217 $\{r, \varepsilon, D, R\}$ 5.988.60 2.96 $\{BFI, \sigma_f, \sigma_\theta\}$ 18 $\{r\}$ $\{\varepsilon, \widetilde{D}\}$ 19 { $r, \varepsilon, \widetilde{D}, \sigma_{\theta}$ } 9.715.976.4520 $\{r, \varepsilon, \widetilde{D}, R, E_h\}$ 6.10 9.145.33 $\{r, \varepsilon, \widetilde{D}, \sigma_{\theta}, \nu\}$ 10.044.006.31 $\{r, \varepsilon, \widetilde{D}, R, BFI\}$ 6.058.846.81 $\{r, \varepsilon, \widetilde{D}, \sigma_{\theta}, \sigma_{f}, E_{h},$ 3.68236.91 12.69BFI, R} 24 $\{r, \varepsilon, D, \sigma_{\theta}, \sigma_{f}, E_{h},$ 6.70 56.44-7.27 $H_s, \overline{T}, \kappa, \mu, \lambda_p \}$

Measure how much predictions change after re-training on subsets

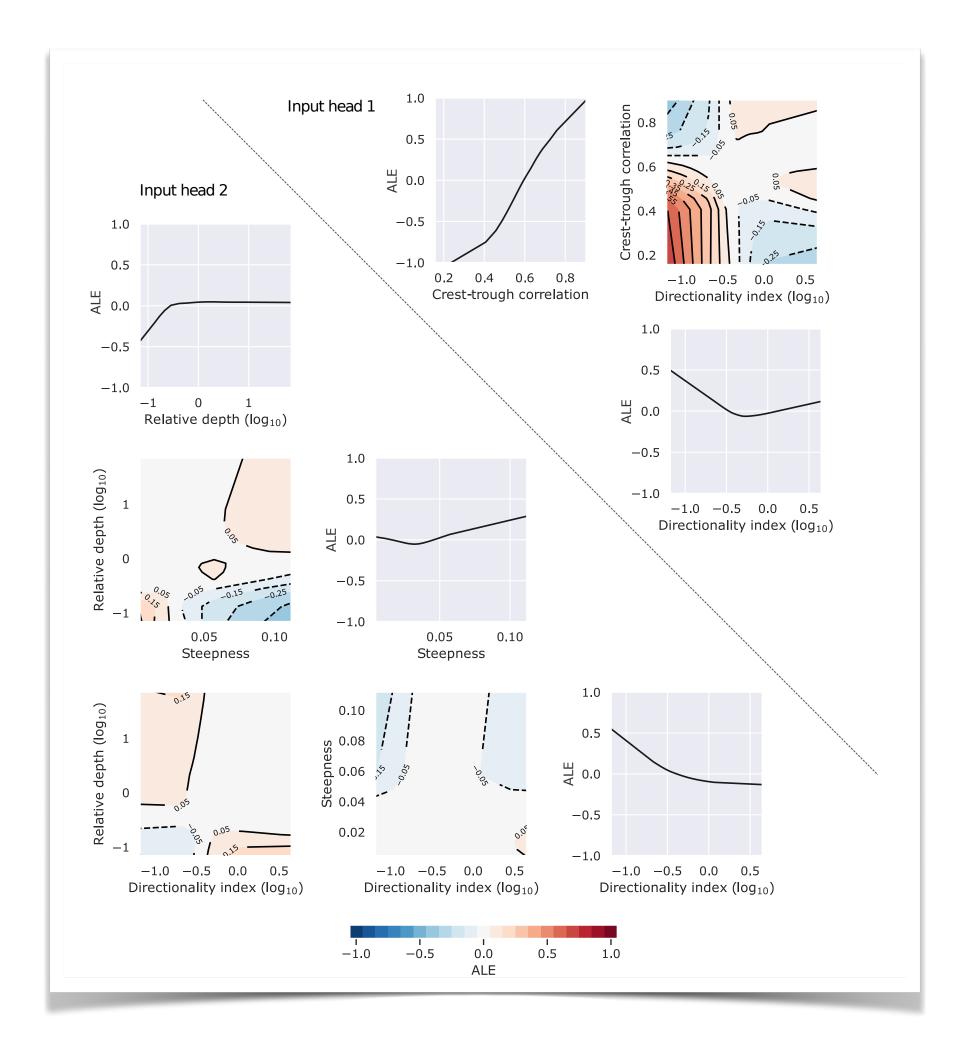


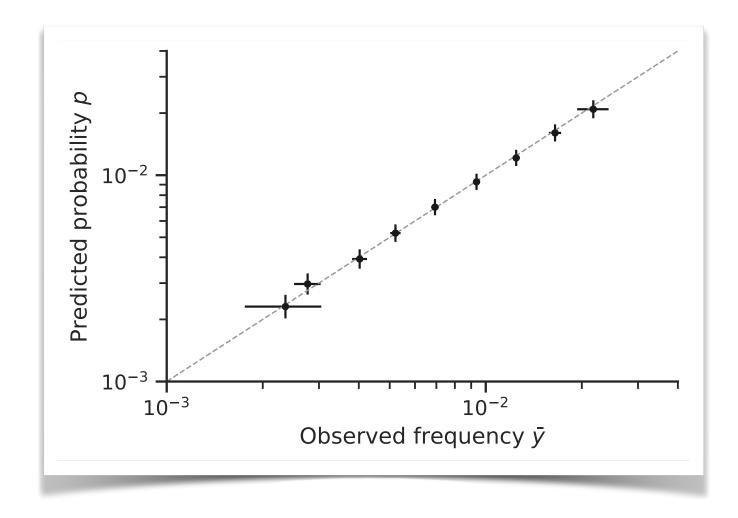
Symb	ools		
r	Crest-trough correlation	ν	Spectral bandwidth (narrowness)
σ_{f}	Spectral bandwidth (peakedness)	$\sigma_{ heta}$	Directional spread
ε	Peak steepness $H_s k_p$	R	Directionality index $\sigma_{\theta}^2/(2\nu^2)$
BFI	Benjamin-Feir index	\widetilde{D}	Relative peak water depth $Dk_p/(2\pi)$
E_h	Relative high-frequency energy	\mathbf{Ur}	Ursell number
\overline{T}	Mean period	κ	Kurtosis
μ	Skewness	H_s	Significant wave height

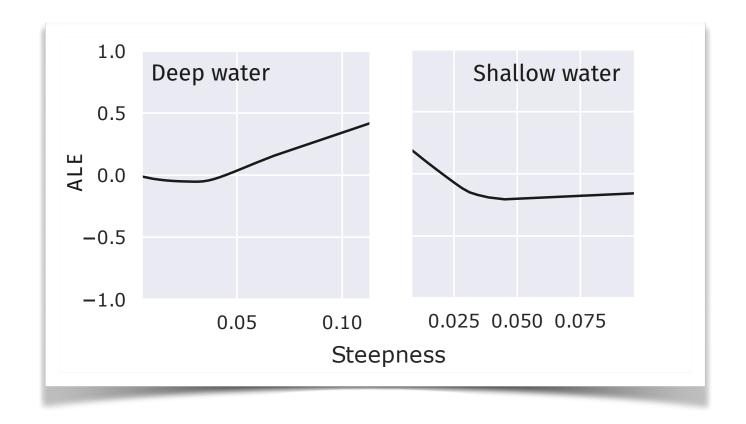
The role of parsimony (I) Model selection



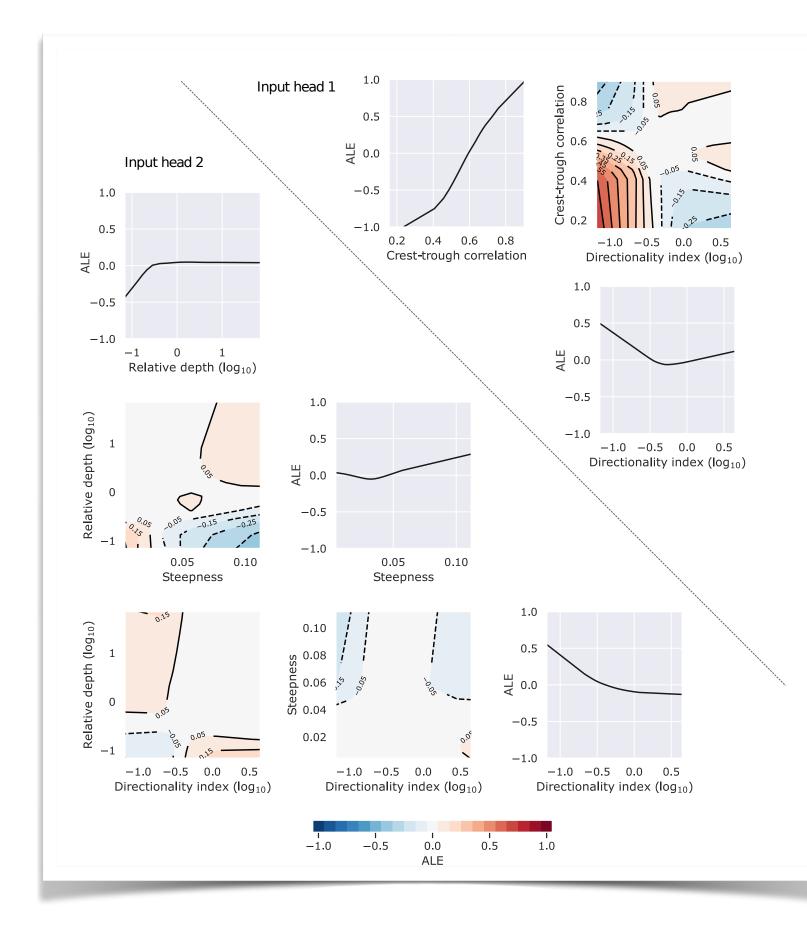
Step 4: Analyze selected model With your favorite interpretable ML methods





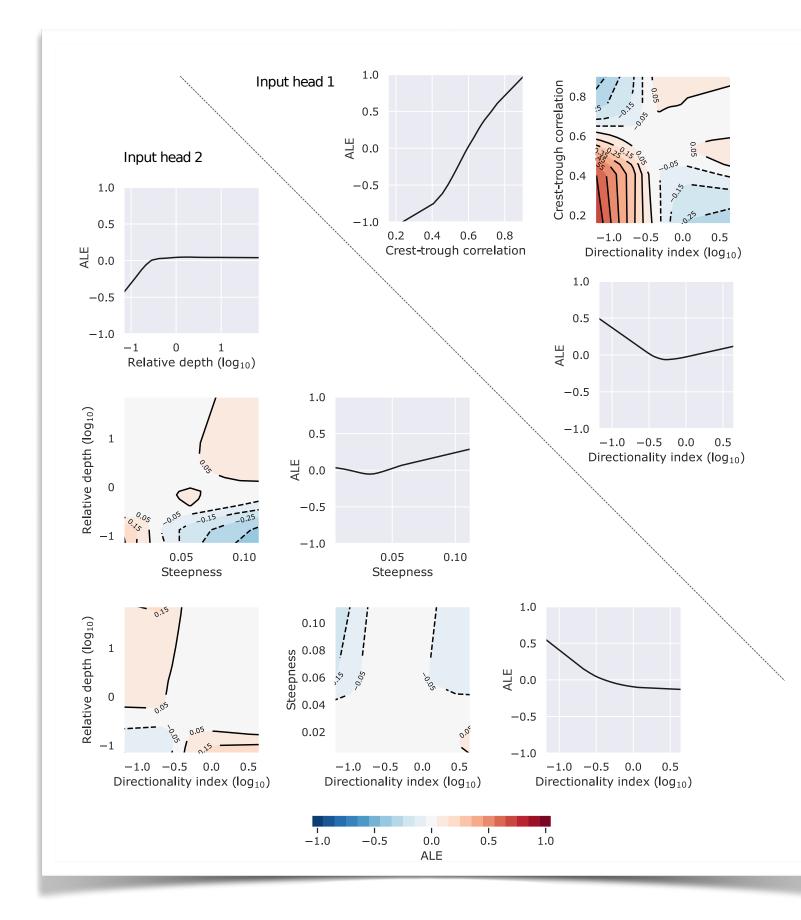


Next step



Symbolic regression $P(H/H_s > \kappa \mid r, \varepsilon, R, kD) = \dots$

Next step DISCOVERY



Symbolic regression $P(H/H_s > \kappa \mid r, \varepsilon, R, kD) = \dots$

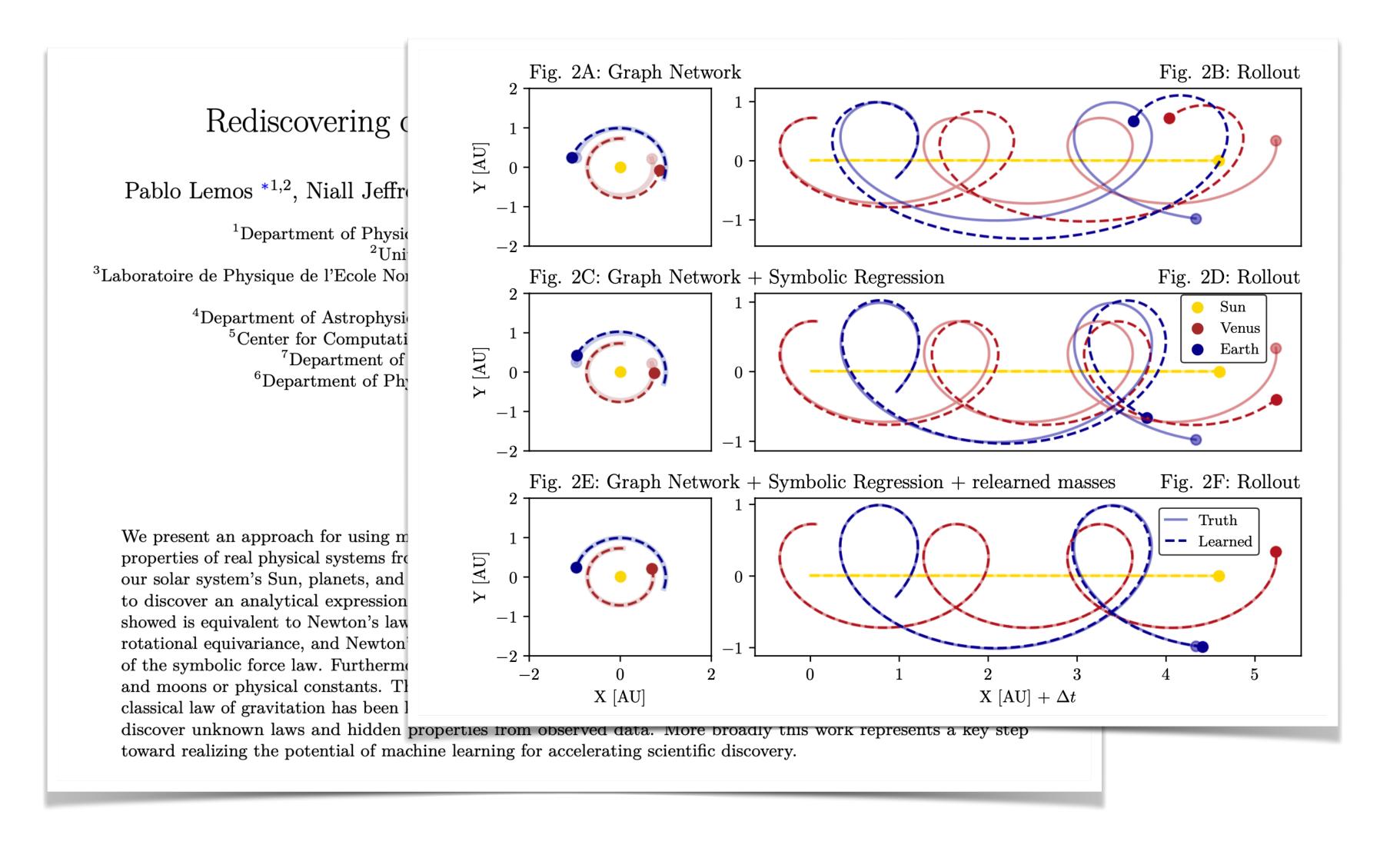
Rediscovering orbital mechanics with machine learning

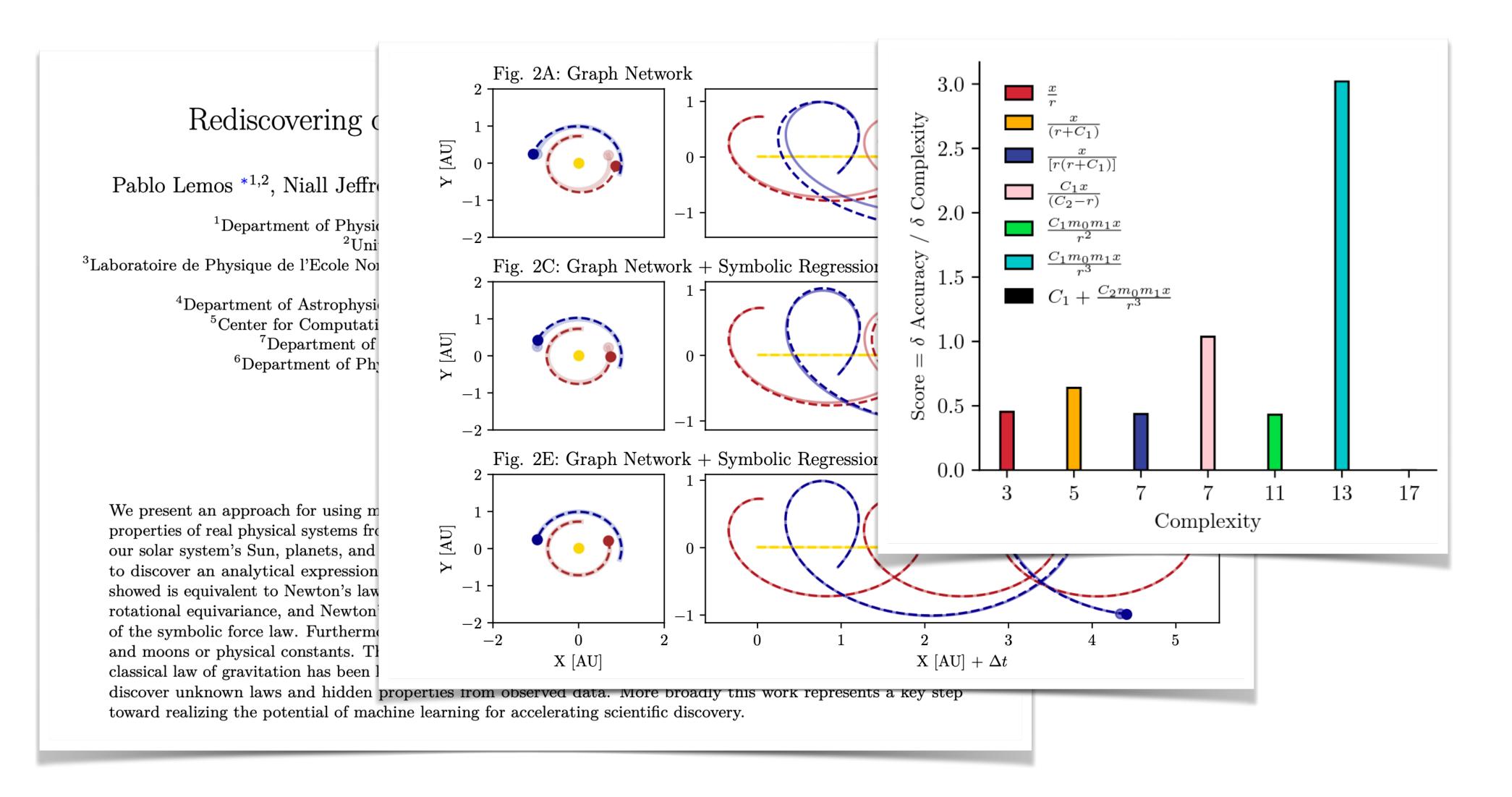
Pablo Lemos *1,2, Niall Jeffrey ^{†3,2}, Miles Cranmer⁴, Shirley Ho^{4,5,6,7}, and Peter Battaglia⁸

¹Department of Physics and Astronomy, University of Sussex,Brighton, BN1 9QH, UK
 ²University College London, Gower St, London, UK
 ³Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université Université de Paris, Paris, France
 ⁴Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
 ⁵Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
 ⁷Department of Physics, New York University, New York, NY 10011, USA
 ⁶Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15217, USA
 ⁸DeepMind, London, N1C 4AG, UK

Abstract

We present an approach for using machine learning to automatically discover the governing equations and hidden properties of real physical systems from observations. We train a "graph neural network" to simulate the dynamics of our solar system's Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to discover an analytical expression for the force law implicitly learned by the neural network, which our results showed is equivalent to Newton's law of gravitation. The key assumptions that were required were translational and rotational equivariance, and Newton's second and third laws of motion. Our approach correctly discovered the form of the symbolic force law. Furthermore, our approach did not require any assumptions about the masses of planets and moons or physical constants. They, too, were accurately inferred through our methods. Though, of course, the classical law of gravitation has been known since Isaac Newton, our result serves as a validation that our method can discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery.





0.297	0.00695565904255765
0.181	0.00386934011267578*exp(r)
0.113	0.012177238*r
0.030	0.000654510454159562*exp(4.023554*r)
0.028	0.00194348077435562*exp(3.5268505*r**2)
0.020	0.00128053886674162*exp(3.7422986*r – σ)
0.020	0.00353452980427828*exp(3.2719116*r**2 – σ)
0.018	0.00240915190512588*exp(3.2004833*r – ν – σ)
0.018	0.00173696837251109*exp(3.403016*r – v**2 – c
0.017	0.00126410565365282*exp(r*(3.8113687 – ε/kD)
0.016	0.00236744728323724*exp(-r*(-3.277927 + ε/kD)
0.015	0.00376661597495146*exp(3.25455527028996*r**2
0.014	0.00382349520334577*exp(3.23052130269801*r**2
0.014	0.00382349520334577*exp(3.23052130269801*r**2
0.013	0.0030822836867589*exp(-r**4/(v*log(kD**2/ɛ**
0.011 - v -	0.00506309157021754*exp(3.399517313284*r**2 - σ)
	0.00504992443082451*exp(3.399517313284*r**2 - + 1)**2 + ε/kD))
0.011	0.00506309157021754*exp(-r**2*((log(v) + 0.99

```
σ)
- σ)
  -v - \sigma)
2 - \sigma - 8.07518292469624*(0.30867642 - v)**2)
2 - \sigma - 2.5516672*(0.2778663 - v)**2/v)
2 - \sigma - 2.43838369006115*(0.2778663 - v)**2/(-\varepsilon + v))
*2)) + 3.92468826802276*r**2 - σ)
- r*(1.16199409653889*(0.927679669983524*log(ν) + 1)**2 + ε/kD)
- v - \sigma - (r - 0.02381676)*(1.16199409653889*(0.927679669983524*)
96239)**2 + 2*\epsilon/kD) + 3.42306020292196*r**2 - \nu - \sigma)
```


$$P(H > 2H_S) = \frac{1}{\sqrt{\sigma}} \exp\left[3.82r - 12\right]$$

$2.04 - \varepsilon \cdot \left(-65.92\varepsilon + \sqrt{1/\varepsilon} + \frac{0.23}{kD \cdot \nu} \right) \right]$

$$P(H > 2H_S) = \frac{1}{\sqrt{\sigma}} \exp\left[3.82r - 12\right]$$

Nonsensical (?) σ can be 0 in theory observed values $\sim (0.2, 1.0)$ \rightarrow minor correction

> Approx. first-order expansion of Tayfun distribution

$$\sim \exp\left[-\frac{16}{1+1}\right]$$
$$= 4r - 12$$

$2.04 - \varepsilon \cdot \left(-65.92\varepsilon + \sqrt{1/\varepsilon} + \frac{0.23}{kD \cdot \nu} \right) \right]$

Weakly nonlinear contribution (pos.)

Wave breaking? (neg.)

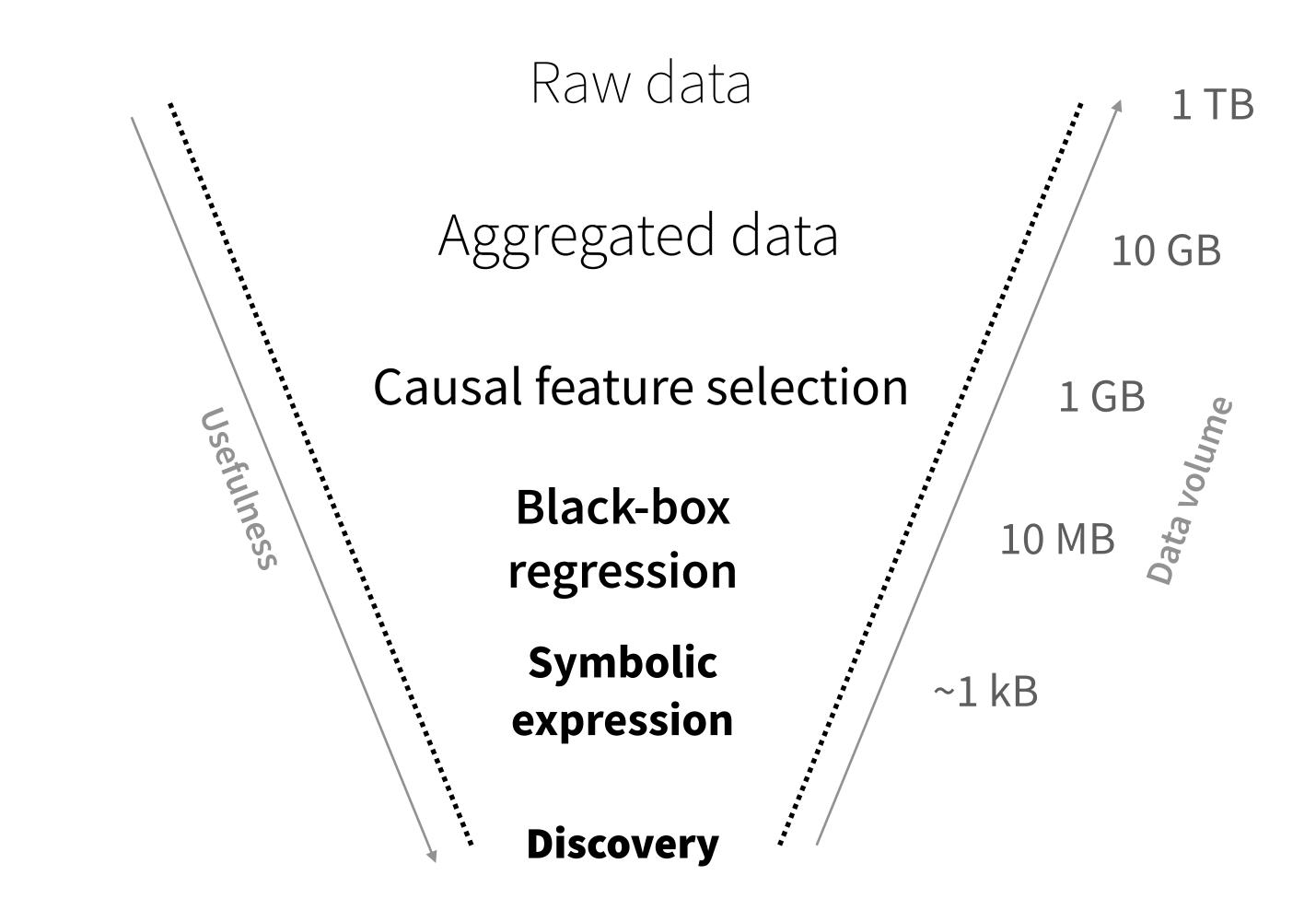
 $\mathcal{O}(r^2)$

$\varepsilon/(kD) \equiv H_S/D$

Governing nonlinear parameter in shallow-water expansion. Wave-induced current?

Some terms we understand already, some are explainable, some questionable.

The funnel From data to science



A call to action What we need:

- (i) Incentives and best practices for **open** data
- (ii) Fast, interpretable methods for probabilistic reasoning
- (iii) Off-the-shelf **causal** methods and education on causal analysis
- (iv) Prioritizing **discovery** over accuracy

