

Occam's Machete

Data-driven discovery with parsimony and causal invariance

Dion Häfner

dion.haefner@simulation.science

(1) Pasteur Labs & Institute for Simulation Intelligence(2) Niels Bohr Institute, University of Copenhagen

The explainability crisis

AlphaZero openings played over training time

And it gets worse

Real-world data is infinitely more difficult

Machine learning applications are often at odds with the #1 goal of science:

Machine learning applications are often at odds with the #1 goal of science:

DISCOVERY

A different guiding principle

/'passiməni/

noun

noun: parsimony

1. extreme unwillingness to spend money or use resources.

Fundamental in nature

$$\delta \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) \, \mathrm{d}t = 0$$

Principle of least action

→ Lagrangian mechanics

Pillar of the scientific method

Occam's razor

Occam's razor, Ockham's razor, or Ocham's razor, also known as the principle of *parsimony* or the law of parsimony, is the problem-solving principle that "entities should not be multiplied beyond necessity".

Let's reboot

Can we discover something from data with parsimony-guided machine learning?

Rogue waves

Definition

Rogue waves

Definition

Rogue waves

Definition

Current wave theory is messy

Occurrence probability depending on sea state

Linear (bandwidth) effects

$$P(H/H_s > h) = \sqrt{\frac{1+r}{2r}} \left(1 + \frac{1-r^2}{64rh^2} \right) \exp\left(-\frac{4}{1+r}h^2 \right)$$

Non-linear effects on envelope

depend on R, kD, eps, ...

+ other effects unaccounted for by current theory

Goal

Find approximately causal predictive model

So we can...

- (I) Understand the generation mechanisms of real-world rogue waves
- (II) Provide a better forecast

An ocean of data

Observations from CDIP buoys

FOWD

[Häfner et al., 2021]

The free ocean wave dataset

Step 1: Write down causal graph

Make assumptions explicit, reduce dimensionality

Step 2: Train neural network

On different subsets of causal features

IDEA

Parameterize rogue wave probability as

$$\log P(h > 2H_s) \sim \underbrace{f_1(r)}_{\text{linear}} + \underbrace{f_2(\text{BFI}, R)}_{\text{free waves}} + \underbrace{f_3(\varepsilon, kD)}_{\text{bound waves}} + \dots$$

where f_i are neural networks.

Step 2: Train neural network

On different subsets of causal features

IDEA

Parameterize rogue wave probability as

$$\log P(h > 2H_s) \sim \underbrace{f_1(r)}_{\text{linear}} + \underbrace{f_2(\text{BFI}, R)}_{\text{free waves}} + \underbrace{f_3(\varepsilon, kD)}_{\text{bound waves}} + \dots$$

where f_i are neural networks.

Step 3: Find causally consistent network

Idea: Causal models are invariant under data shift

TABLE 1. The subsets of the validation data set used to evaluate model invariance

Subset name	Condition	# waves	
southern-california	nia Longitude $\in (-123.5, -117)^{\circ}$, Latitude $\in (32, 38)^{\circ}$		
deep-stations	Water depth $> 1000 \mathrm{m}$	33M	
shallow-stations	Water depth < 100 m	138M	
summer	Day of year $\in (160, 220)$	44M	
winter	Day of year $\in (0,60)$	88M	
Hs > 3m	$H_s > 3 \mathrm{m}$	55M	
high-frequency	Relative swell energy < 0.15	40M	
low-frequency	Relative swell energy > 0.7	42M	
long-period	Mean zero-crossing period $> 9 s$	40M	
short-period	Mean zero-crossing period < 6s	90M	
cnoidal	Ursell number > 8	34M	
weakly-nonlinear	Steepness > 0.04	80M	
spectral-narrow	Directionality index < 0.3	68M	
spectral-wide	Directionality index > 1	37M	
full	(all validation data)	438M	

Measure how much predictions change after re-training on subsets

Step 3: Find causally consistent network

Idea: Causal models are invariant under data shift

TABLE 1. The subsets of the validation data set used to evaluate model invariance.

Subset name	Condition	# waves
southern-california	Longitude $\in (-123.5, -117)^{\circ}$, Latitude $\in (32, 38)^{\circ}$	233M
deep-stations	Water depth $> 1000 \mathrm{m}$	33M
shallow-stations	Water depth < 100 m	138M
summer	Day of year $\in (160, 220)$	44M
winter	Day of year $\in (0,60)$	88M
Hs > 3m	$H_s > 3 \mathrm{m}$	55M
high-frequency	Relative swell energy < 0.15	40M
low-frequency	Relative swell energy > 0.7	42M
long-period	Mean zero-crossing period $> 9 s$	40M
short-period	Mean zero-crossing period < 6s	90M
cnoidal	Ursell number > 8	34M
weakly-nonlinear	Steepness > 0.04	80M
spectral-narrow	Directionality index < 0.3	68M
spectral-wide	Directionality index > 1	37M
full	(all validation data)	438M

Measure how much predictions change after re-training on subsets

Table 2. Full list of experiments. \mathcal{L} : Prediction score (higher is better). \mathcal{E} : Invariance error (lower is better). \mathcal{C} : Calibration error (lower is better). Color coding ranges between (median – IQR, median + IQR) with inter-quartile range IQR.

		Feature groups			Scores	
ID	1	2	3	$\mathcal{L} \times 10^4$	$\mathcal{E} \times 10^2$	$\mathcal{C} \times 10^2$
1	$\{r\}$			4.62	8.52	6.90
2	$\{r,R\}$			5.05	8.58	3.86
3	$\{arepsilon,\widetilde{D},R\}$			0.03	22.59	6.21
4	$\{r,\widetilde{D},R\}$			5.56	7.95	4.34
5	$\{r,arepsilon,R\}$			5.49	8.83	3.83
6	$\{r,arepsilon,\widetilde{D}\}$			5.35	8.89	7.05
7	$\{r,R\}$	$\{arepsilon,\widetilde{D}\}$		5.77	9.19	4.46
8	$\{r,R,{ m Ur}\}$			5.70	7.99	3.94
9	$\{r,R\}$	$\{\operatorname{Ur},R\}$		5.64	7.49	4.31
10	$\{r, R, BFI\}$			5.60	7.75	4.51
11	$\{r,R\}$	$\{BFI, R\}$		5.46	8.20	4.44
12	$\{r\}$	$\{arepsilon,\widetilde{D},R\}$		5.67	9.24	4.67
13	$\{\sigma_f\}$	$\{arepsilon,\widetilde{D},R\}$		4.11	12.16	6.30
14	$\{r\}$	$\{arepsilon,\widetilde{D}\}$	$\{\mathrm{BFI},R\}$	5.64	9.77	6.02
15	$\{r,R\}$	$\{arepsilon,\widetilde{D},\sigma_{ heta}\}$		6.22	10.63	5.20
16	$\{r,R\}$	$\{arepsilon,\widetilde{D},R\}$		5.87	8.63	3.62
17	$\{r,arepsilon,\widetilde{D},R\}$			5.98	8.60	2.96
18	$\{r\}$	$\{arepsilon,\widetilde{D}\}$	$\{\mathrm{BFI},\sigma_f,\sigma_{ heta}\}$	6.01	11.10	8.43
19	$\{r,arepsilon,\widetilde{D},\sigma_{ heta}\}$			5.97	9.71	6.45
20	$\{r,arepsilon,\widetilde{D},R,E_h\}$			6.10	9.14	5.33
21	$\{r,arepsilon,\widetilde{D},\sigma_{ heta}, u\}$			6.31	10.04	4.00
22	$\{r,arepsilon,\widetilde{D},R,\mathrm{BFI}\}$			6.05	8.84	6.81
23	$\{r, \ arepsilon, \ \widetilde{D}, \ \sigma_{ heta}, \ \sigma_{f}, \ E_{h}, \ ext{BFI}, \ R\}$			6.91	12.69	3.68
24	$\{r, \ \varepsilon, \ \widetilde{\widetilde{D}}, \ \sigma_{\theta}, \ \sigma_{f}, \ E_{h}, \ H_{s}, \ \overline{T}, \ \kappa, \ \mu, \ \lambda_{p}\}$			6.70	56.44	7.27

Symbols

r	Crest-trough correlation	ν	Spectral bandwidth (narrowness)
σ_f	Spectral bandwidth (peakedness)	$\sigma_{ heta}$	Directional spread
ε	Peak steepness $H_s k_p$	R	Directionality index $\sigma_{\theta}^2/(2\nu^2)$
BFI	Benjamin-Feir index	\widetilde{D}	Relative peak water depth $Dk_p/(2\pi)$
E_h	Relative high-frequency energy	Ur	Ursell number
\overline{T}	Mean period	κ	Kurtosis
μ	Skewness	H_s	Significant wave height

Step 3: Find causally consistent network

Idea: Causal models are invariant under data shift

TABLE 1. The subsets of the validation data set used to evaluate model

Subset name	Condition	# waves	
southern-california	nern-california Longitude $\in (-123.5, -117)^{\circ}$, Latitude $\in (32, 38)^{\circ}$		
deep-stations	Water depth $> 1000 \mathrm{m}$	33M	
shallow-stations	Water depth < 100 m	138M	
summer	Day of year $\in (160, 220)$	44M	
winter	Day of year $\in (0,60)$	88M	
Hs > 3m	$H_s > 3 \mathrm{m}$	55M	
high-frequency	Relative swell energy < 0.15	40M	
low-frequency	Relative swell energy > 0.7	42M	
long-period	Mean zero-crossing period $> 9 s$	40M	
short-period	Mean zero-crossing period < 6s	90M	
cnoidal	Ursell number > 8	34M	
weakly-nonlinear	Steepness > 0.04	80M	
spectral-narrow	Directionality index < 0.3	68M	
spectral-wide	Directionality index > 1	37M	
full	(all validation data)	438M	

Measure how much predictions change after re-training on subsets

TABLE 2. Full list of experiments. L: Prediction score (higher is better). E: Invariance error (lower is better). C: Calibration error (lower is better). Color coding ranges between (median – IQR, median + IQR) with inter-quartile range IQR.

		Feature groups			Scores	
ID	1	2	3	$\mathcal{L} \times 10^4$	$\mathcal{E} \times 10^2$	$\mathcal{C} \times 10^2$
1	$\{r\}$			4.62	8.52	6.90
2	$\{r,R\}$			5.05	8.58	3.86
3	$\{arepsilon,\widetilde{D},R\}$			0.03	22.59	6.21
4	$\{r,\widetilde{D},R\}$			5.56	7.95	4.34
5	$\{r, \varepsilon, R\}$			5.49	8.83	3.83
6	$\{r,arepsilon,\widetilde{D}\}$			5.35	8.89	7.05
7	$\{r,R\}$	$\{arepsilon,\widetilde{D}\}$		5.77	9.19	4.46
8	$\{r,R,{ m Ur}\}$			5.70	7.99	3.94
9	$\{r,R\}$	$\{\operatorname{Ur},R\}$		5.64	7.49	4.31
10	$\{r,R,\mathrm{BFI}\}$			5.60	7.75	4.51
11	$\{r,R\}$	$\{BFI, R\}$		5.46	8.20	4.44
12	$\{r\}$	$\{arepsilon,\widetilde{D},R\}$		5.67	9.24	4.67
13	$\{\sigma_f\}$	$\{arepsilon,\widetilde{D},R\}$		4.11	12.16	6.30
14	$\{r\}$	$\{arepsilon,\widetilde{D}\}$	$\{\mathrm{BFI},R\}$	5.64	9.77	6.02
15	$\{r,R\}$	$\{arepsilon,\widetilde{D},\sigma_{ heta}\}$		2.00	10.60	5.00
16	$\{r,R\}$	$\{arepsilon,\widetilde{D},R\}$		5.87	8.63	3.62
17	$\{r,arepsilon,\widetilde{D},R\}$			5.98	8.60	2.96
18	$\{r\}$	$\{arepsilon,\widetilde{D}\}$	$\{\mathrm{BFI},\sigma_f,\sigma_\theta\}$	5.01	11.10	0.113
19	$\{r,arepsilon,\widetilde{D},\sigma_{ heta}\}$			5.97	9.71	6.45
20	$\{r,arepsilon,ar{D},R,E_h\}$			6.10	9.14	5.33
21	$\{r,arepsilon,\widetilde{D},\sigma_{ heta}, u\}$			6.31	10.04	4.00
22	$\{r,arepsilon,\widetilde{D},R,\mathrm{BFI}\}$			6.05	8.84	6.81
23	$\{r, \ arepsilon, \ \widetilde{D}, \ \sigma_{ heta}, \ \sigma_{f}, \ E_{h}, \ ext{BFI}, \ R\}$			6.91	12.69	3.68
24	$\{r, \ arepsilon, \ \widetilde{D}, \ \sigma_{ heta}, \ \sigma_{f}, \ E_{h}, \ H_{s}, \ \overline{T}, \ \kappa, \ \mu, \ \lambda_{p}\}$			6.70	56.44	7.27

Symbols

Skewness

Crest-trough correlation ν Spectral bandwidth (narrowness) Spectral bandwidth (peakedness) Directional spread Peak steepness $H_s k_p$ Directionality index $\sigma_{\theta}^2/(2\nu^2)$ Benjamin-Feir index Relative peak water depth $Dk_p/(2\pi)$ Relative high-frequency energy Ur Ursell number Mean period Kurtosis H_s Significant wave height

Model selection

Step 4: Analyze selected model

With your favorite interpretable ML methods

Next step

Symbolic regression $P(H/H_s > \kappa \mid r, \varepsilon, R, kD) = \dots$

Next step

DISCOVERY

Symbolic regression $P(H/H_s > \kappa \mid r, \varepsilon, R, kD) = \dots$

Distillation through symbolic regression

Rediscovering orbital mechanics with machine learning

Pablo Lemos *1,2, Niall Jeffrey †3,2, Miles Cranmer⁴, Shirley Ho^{4,5,6,7}, and Peter Battaglia⁸

¹Department of Physics and Astronomy, University of Sussex,Brighton, BN1 9QH, UK

²University College London, Gower St, London, UK

³Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université de Paris, Paris, France

⁴Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
⁵Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
⁷Department of Physics, New York University, New York, NY 10011, USA
⁶Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15217, USA
⁸DeepMind, London, N1C 4AG, UK

Abstract

We present an approach for using machine learning to automatically discover the governing equations and hidden properties of real physical systems from observations. We train a "graph neural network" to simulate the dynamics of our solar system's Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to discover an analytical expression for the force law implicitly learned by the neural network, which our results showed is equivalent to Newton's law of gravitation. The key assumptions that were required were translational and rotational equivariance, and Newton's second and third laws of motion. Our approach correctly discovered the form of the symbolic force law. Furthermore, our approach did not require any assumptions about the masses of planets and moons or physical constants. They, too, were accurately inferred through our methods. Though, of course, the classical law of gravitation has been known since Isaac Newton, our result serves as a validation that our method can discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery.

Distillation through symbolic regression

Rediscovering of

Pablo Lemos *1,2, Niall Jeffre

¹Department of Physic ²Uni

³Laboratoire de Physique de l'Ecole Noi

⁴Department of Astrophysic ⁵Center for Computati ⁷Department of ⁶Department of Physic ⁶Depar

We present an approach for using memory properties of real physical systems from our solar system's Sun, planets, and to discover an analytical expression showed is equivalent to Newton's law rotational equivariance, and Newton of the symbolic force law. Furthermound moons or physical constants. The classical law of gravitation has been laws and hidden to discover unknown laws and discover unknown laws and discover unknown

discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery.

Distillation through symbolic regression

Pablo Lemos *1,2, Niall Jeffre

¹Department of Physic ²Uni

³Laboratoire de Physique de l'Ecole Noi

⁴Department of Astrophysic ⁵Center for Computati ⁷Department of ⁶Department of Physic ⁶Depar

We present an approach for using memory properties of real physical systems from our solar system's Sun, planets, and to discover an analytical expression showed is equivalent to Newton's law rotational equivariance, and Newton of the symbolic force law. Furthermound moons or physical constants. The classical law of gravitation has been laws and hidden to discover unknown laws and discover unknown laws and discover unknown

discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery.

Distillation through symbolic regression

```
0.297 0.00695565904255765
0.181 0.00386934011267578*exp(r)
0.113 0.012177238*r
0.030 0.000654510454159562*exp(4.023554*r)
0.028 0.00194348077435562*exp(3.5268505*r**2)
0.020 0.00128053886674162*exp(3.7422986*r - \sigma)
0.020 0.00353452980427828*exp(3.2719116*r**2 - \sigma)
0.018 0.00240915190512588*exp(3.2004833*r - \nu - \sigma)
0.018 0.00173696837251109*exp(3.403016*r - v**2 - \sigma)
0.017 0.00126410565365282*exp(r*(3.8113687 - \epsilon/kD) - \sigma)
0.016 0.00236744728323724*exp(-r*(-3.277927 + \epsilon/kD) - \nu - \sigma)
0.015 0.00376661597495146*exp(3.25455527028996*r**2 - <math>\sigma - 8.07518292469624*(0.30867642 - \nu)**2)
0.014 0.00382349520334577*exp(3.23052130269801*r**2 - <math>\sigma - 2.5516672*(0.2778663 - \nu)**2/\nu)
0.014 0.00382349520334577*exp(3.23052130269801*r**2 - <math>\sigma - 2.43838369006115*(0.2778663 - \nu)**2/(-\epsilon + \nu))
       0.0030822836867589*exp(-r**4/(v*log(kD**2/\epsilon**2)) + 3.92468826802276*r**2 - \sigma)
0.011 0.00506309157021754*exp(3.399517313284*r**2 - r*(1.16199409653889*(0.927679669983524*log(v) + 1)**2 + \epsilon/kD)
- v - \sigma
0.011 0.00504992443082451*exp(3.399517313284*r**2 - <math>v - \sigma - (r - 0.02381676)*(1.16199409653889*(0.927679669983524*)
\log(v) + 1)**2 + \varepsilon/kD)
0.011 0.00506309157021754*exp(-r**2*((log(v) + 0.996239)**2 + 2*\epsilon/kD) + 3.42306020292196*r**2 - v - \sigma)
```

DISCOVERY

DISCOVERY

$$P(H > 2H_S) = \frac{1}{\sqrt{\sigma}} \exp\left[3.82r - 12.04 - \varepsilon \cdot \left(-65.92\varepsilon + \sqrt{1/\varepsilon} + \frac{0.23}{kD \cdot \nu}\right)\right]$$

DISCOVERY

Some terms we understand already, some are explainable, some questionable.

The funnel

From data to science

A call to action

What we need:

- (i) Incentives and best practices for **open** data
- (ii) Fast, interpretable methods for **probabilistic reasoning**
- (iii) Off-the-shelf **causal** methods and education on causal analysis
- (iv) Prioritizing **discovery** over accuracy

