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The art of approximation

Maxwell’s equations in terms
of fields E(x,t), B(x,t)

3D radiative transfer in terms of 
monochromatic radiances I (x,Ω,𝜈)

1D radiative transfer in terms 
of two monochromatic fluxes 
F↓(z, 𝜈), F↑(z, 𝜈)

Atmospheric radiation is well-
understood but approximated 
out of computational necessity

● ignore polarization
● group together frequencies  
● atmosphere is horizontally 

homogenous within a grid 
column (“plane-parallel”)

● consider radiation only in two 
directions, up and down (“two-
stream”)

Adapted from slides 
by Robin Hogan2



  

The art of approximation

3D radiation 
(real atmosphere)

Weather/
climate model
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The art of approximation

• Radiative transfer is an expensive 
component in coarse-resolution 
simulations especially

• This is despite using many 
approximations 

• In the IFS, only a few % of model 
runtime, but radiation is called on a 
coarser grid and only every hour

• Since atmospheric radiation drives 
weather and climate, 
approximations and infrequent 
computations are consequential

• → accuracy/speed trade-off is 
important and should be improved 

Coarse-res 
GCM (~460 
km)

Low-res 
(170 km)
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Key question:

Can machine learning actually “improve” 
the trade-off between accuracy and 
efficiency for radiation?

ML to the rescue?
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Key question:

Can machine learning actually “improve” 
the trade-off between accuracy and 
efficiency for radiation?

Attempts so far using dense networks 
have given big speedups but at large 
costs in accuracy and generalization 

ML to the rescue?
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Slide by Matthew Chantry 
(ECMWF Annual Seminar 2022)

(Radiation, convection, etc)
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Dense nets for radiative transfer – the problem
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Dense nets for radiative transfer – the problem

Inputs are profiles of pressure, 
temperature, gases, cloud water and 
ice, and a few scalar variables such 
as incident solar radiation (shortwave 
only)

Outputs are profiles of heating 
rates (HR) = dT/dt 

Radiation codes compute HR from 
upward and downward fluxes, but 
this approach gives noisy heating 
rates with dense NNs, so typically the 
outputs are HRs + surface and top-
of-atmosphere fluxes

→ better estimate of HR but breaks 
energy conservation
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Dense nets for radiative transfer – the problem

10



  

Dense nets for radiative transfer – the problem

Mismatch in the direction of 
information flow between the 
model and the process! 
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Curse of dimensionality

Given 137 levels in model column,  6 level-wise inputs:
 
DNN-based emulator has 137*6=822 inputs, weight 
matrix of input layer is BIG! (822 × num_neurons)
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Recurrent neural networks for radiation (the solution?)
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Recurrent neural networks for radiation (the solution?)

Characteristics of atmospheric radiative transfer 
respected by RNNs :

● Correct directionality, however radiation flows 
both upward and downward, so we need 
bidirectional RNNs (BiRNN)!

● Sequential from one level to the next – unlike 
DNN, which (unphysically) connects the top directly 
to the surface

● Invariable physical laws by height – unlike DNN, 
which (unphysically) uses level-specific weights 14



  

RNNs for shortwave radiation (JAMES 2022)

● RNNs were introduced for atmospheric radiation in 
Ukkonen (2022), where they were compared to other 
emulation approaches for SW radiation (including 
dense nets).

● Training data was generated offline using the 
RTE+RRTMGP scheme, using global CAMS data 
and including clouds, but not aerosols
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RNNs for shortwave radiation (JAMES 2022)

● RNNs were introduced for atmospheric radiation in 
Ukkonen (2022), where they were compared to other 
emulation approaches for SW radiation (including 
dense nets).

● Training data was generated offline using the 
RTE+RRTMGP scheme, using global CAMS data 
and including clouds, but not aerosols

● To ensure energy conservation, the NNs predict full 
flux profiles, from which heating rates are computed. 
A hybrid loss function is used to reduce HR errors

● For shortwave, a helpful trick is to normalize all the 
fluxes by the incoming solar radiation, so outputs 
range from 0..1 (physical scaling) 

16



  

First attempt (simple approach)

A BiRNN iterates through N level-wise inputs and 
predicts the upward flux above and downward flux 
below that level

Works OK but has problems:

● The albedo α was incorporated to the BiRNN 
thorugh a DNN that predicts the initial state, but 
physically in the wrong place (top instead of 
surface)

● Upward flux at surface, F↑ (N+1) not predicted but 
computed as F↓pred (N+1) × α 

● Introduces a discontinuity at the surface and 
ignores any spectral variation of albedo 

RNNs for shortwave radiation (JAMES 2022)
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A better model by attempting to mimic 
the equations

● Three iterations (down, up and down 
again) as in the RTE shortwave solver 

● From inputs defined at N levels (layers) to 
fluxes at N+1 half-levels by concatenating 
the first RNN sequence with the output of a 
“surface” DNN – corresponds to how 
surface albedo is concatenated with level 
albedos

● Looks complicated but model complexity is 
low: final model used only 5600 
parameters (3x GRUs with 8 neurons)

RNNs for shortwave radiation (JAMES 2022)
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RNNs for shortwave radiation (JAMES 2022)

Dense networks:
RMSE 1.35 K / day
100,000 parameters
~50x speedup

RNNs:
RMSE 0.16 K / day 
5600 parameters
~5x speedup

NNs only for predicting optical 
properties: 
RMSE 0.05 K / day
4200 parameters
~1.3x speedup, but also better 
generalization and flexibility

! speed-ups are on CPU and relative to a modern 
but somewhat expensive radiation scheme with 
high spectral resolution (RTE+RRTMGP)
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RNNs for shortwave radiation (JAMES 2022)

Dense networks:
RMSE 1.35 K / day
100,000 parameters
~50x speedup

RNNs:
RMSE 0.16 K / day 
5600 parameters
~5x speedup

NNs only for predicting optical 
properties: 
RMSE 0.05 K / day
4200 parameters
~1.3x speedup, but also better 
generalization and flexibility

Dense networks produce noisy fluxes, 
which leads to inaccurate heating rates!  
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A mistake 

Need for three iterations not so intuitive. 
In practice, I used three because it gave 
better results than two. 
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However, there was a mistake in the 
code: Keras apparently requires the 
output of RNNs with “backward=true” to 
be manually reversed, which wasn’t 
done in the paper.

Oops.

A mistake 

Need for three iterations not so intuitive. 
In practice, I used three because it gave 
better results than two. 
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A closer look at radiation schemes (ecRad)
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A closer look at radiation schemes (ecRad)

1. Compute layer-wise optical properties such as 
optical depth given gas concentrations, clouds, 
aerosols (no vertical dependencies)

2. The radiative transfer solver takes the spectrally defined 
optical properties, cloud overlap assumptions, etc, and:

1) Compute layer-wise reflectances and transmittances        
(no vertical dependencies)   

2) Starting at the surface, iterate upwards to compute total 
albedos and sources (LW only) 

3) Starting at TOA, iterate downwards to compute fluxes 
(spectral, then average for broadband flux)24
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RNNs emulating ecRad, tested in the IFS
Work mainly by Matthew Chantry (ECMWF) 

● RNNs were trained on the inputs and outputs of ecRad (TripleClouds solver) using a hybrid 
loss incorporating heating rate.

● Training - 2020, Evaluation – 2021

● IFS implementation / online inference by using Infero, a lower-level ML library developed at 
ECMWF that supports different back-ends  

               github.com/ecmwf-projects/infero  
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Longwave RNNs 
(64-neuron 
LSTMs)

Offline errors 

RNNs emulating ecRad, tested in the IFS
Work mainly by Matthew Chantry (ECMWF) 
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Shortwave RNNs 
(64-neuron 
LSTMs)

Offline errors 

RNNs emulating ecRad, tested in the IFS
Work mainly by Matthew Chantry (ECMWF) 
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RNN vs TripleClouds

Plots show the change in 
RMSE in temperature 
using a suite of June-July-
August IFS experiments 
at ~30km resolution

Red = degradation 
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Plots show the change in 
RMSE in temperature 
using a suite of June-July-
August IFS experiments 
at ~30km resolution

Red = degradation 

RNN vs TripleClouds McICA vs TripleClouds
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Emulation of 3D cloud radiative effects (Meyer et al. 2022)

DNNs from paper, ~525k parameters each 
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Emulation of 3D cloud radiative effects (Meyer et al. 2022)

DNNs from paper, ~525k parameters each 32-neuron 
BiGRUs, ~17k 
parameters  
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Emulation of 3D cloud radiative effects (Meyer et al. 2022)

DNNs from paper, ~525k parameters each BiRNNs, ~17k 
parameters each 

On CPU, RNNs ~4x 
faster than reference 
ecRad-SPARTACUS (3D 
solver that is emulated)..

Recent optimizations 
and improvements to 
ecRad change the 
picture: now actually 
~3x slower; on the 
other hand, SPARTACUS  
is not yet fully stable in 
single precision, while 
NNs are

GPUs, half-precision 
further boost to 
emulation?

32-neuron 
BiGRUs, ~17k 
parameters  

What about speed?
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Key question:

Can machine learning actually “improve” 
the trade-off between accuracy and 
efficiency for radiation?

Answer: no free lunch with ML. Our 
results show that recurrent NNs can 
emulate radiation schemes very closely, 
but may or may not be faster. Dense nets 
are fast, but inaccurate.
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For radiation, the motivation for using ML has been to improve speed, but 
there are other ways to achieve this  

Code optimization is arguably an unexploited potential in improving the 
efficiency of weather / climate model code 

Improving efficiency
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For radiation, the motivation for using ML has been to improve speed, but 
there are other ways to achieve this  

Code optimization is arguably an unexploited potential in improving the 
efficiency of weather / climate model code 

Improving efficiency

Ukkonen and Hogan (in prep.): By combining

● Code refactoring to improve e.g. vectorization on modern CPUs, with

● Innovations in algorithms (reducing the spectral dimension)

..we end up with ~10x improvement in speed for TripleClouds and 
SPARTACUS; SPARTACUS with reduced gas optics actually 2x cheaper 
than operational ecRad in the IFS! 
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● Past studies emulating radiation and other sub-grid processes have typically used feed-forward 
NNs, concatenating vertical profiles of several variables into long input/output columns

● However, this approach does not really respect the physics: radiative transfer is vertically non-
local and sequential. Why introduce spurious connections?

● We can instead treat the vertical column as a sequence and feed it to RNNs, allowing 
information to directly propagate through the vertical column. Single-level variables can be 
inserted “where it makes sense”, initializing the RNNs etc. 

● Accuracy is greatly improved, with relatively simple models being able to closely emulate 
radiative transfer

● The reduced dimensionality should improve generalization, a key challenge in using ML for 
climate and weather model parameterizations

● (Personal take) Improvements to radiation codes have made them difficult to beat using ML, but 
other parameterized processes such as clouds and convection are also vertically non-local  
(and a key source of uncertainty in climate projections) – could RNNs provide a breakthrough?

Summary and outlook
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Thanks for listening!

Any questions?
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