

Met Office

Temporal downscaling wind climate data using Machine Learning

Joana Mendes, Emilie Vanvyve, Shenan Grossberg, Natalie Tripp Foulds, Kevin Donkers, Laura Hume-Wright, Michael Angus, Kate Brown

ECMWF-ESA Workshop on Machine Learning for Earth Observation and Prediction

14-17 November 2022

Temporal downscaling to improve climate-scale predictability of wind ramps and wind droughts

Downscaling modelling

- Literature review for model selection
- Test statistical and ML approaches
- Use different climate date sources
- Focus on surface winds

Validation

- Metrics selection
- Inter-model comparison against observations
- Compare models to downscale wind climate data \bullet onto sub-hourly temporal resolutions.
- Focus on short-duration (wind ramp) and longduration (wind drought) events.

Objectives

* Supported by: Towards Turing 2.0 under the EPSRC Grant EP/W037211/1 & The Alan Turing Institute

Challenges

- Spatial correlation and joint space-time
- Multivariate modelling and compound events
- Probabilistic framework
- Extension to future projections

• Handle TB of data

- Analyse different climate data sources
- Preserve relevant statistical properties
- Location-based analysis of historical climate surface winds (control member)

Compromises

events

1. Retrieve and process data

- UKCP18 Local hourly
- **EURO-CORDEX** EUR-11 3-hourly
- **Observations** 10-minute

2. Test downscaling models

Downscale climate wind timeseries to sub-hourly:

- **ARIMA** statistical model
- Auto-Encoders unsupervised ML model
- **LSTM** supervised ML model

3. Validation

Model performance measured against observations:

- Wind ramp large change in wind speed in a short period
- Wind drought low wind speeds over a long period

Baseline analyses

Wind ramp events

Maximum change in capacity factor above a threshold, within a given time window.

Wind drought events

Ratio of time capacity factor is below a threshold, within a given time window.

Declustering

Group events exceeding threshold into independent clusters; retain only most extreme.

Ramp events

S2

S1

Drought events

Auto-Encoders

(b)

input $x_1^{1..12}$ 1 sigmoid **a**₁ 1 1 **** relu 11 ١ 1 **a**₁ 1 1 1 1 ١ · · · / · · / · · / · · / · · · · · · · · · · · · . / 1 a₃₂ 1 ١ 1 1 ۱ ۱ a₆₄ x^{1..12} 128

encoder

(a)

Train: 1 month; Predict: 1 week

(a)

Train: 2 months; Predict 1 month

Long-Short Term Memory

Jan 30, 2022

Month-Day

Jan 29, 2022

Increased learning rate

Jan 31, 2022

Increased model complexity

Ramp events

S2

S.

Drought events

Month-Day

Ramp events

S2

Drought events

Help improve information used to support decisions for security of future electricity supply under climate change uncertainty

- Machine Learning models tested for temporal downscaling wind climate data to sub-hourly timescales • Preserve relevant statistical properties such as long-term variability and extremes
- Selected different climate models and offshore locations
- Model performance measured against wind ramp and wind drought metrics

- UKCP18 Local captures both ramps and droughts better than EUR-11
- Auto-Encoders can reproduce 10-min timeseries over period of few months, but not in longer term nor extremes
- LSTM can improve climate-scale predictability of wind ramps and wind droughts, outperforming linear interpolation

Over to you...