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Scope



Temporal downscaling to improve climate-scale predictability of 
wind ramps and wind droughts

Why?
Decision support under climate 
uncertainty for energy security 
and net zero*

Objectives

• Compare models to downscale wind climate data 
onto sub-hourly temporal resolutions. 

• Focus on short-duration (wind ramp) and long-
duration (wind drought) events.

Baseline analyses

• Identification of  wind ramp and wind 
drought events

• Basis of truth
• Test feasibility for temporal downscaling

Validation

• Metrics selection
• Inter-model comparison against observations

Downscaling modelling

• Literature review for model selection
• Test statistical and ML approaches
• Use different climate date sources
• Focus on surface winds

* Supported by: Towards Turing 2.0 under the EPSRC Grant EP/W037211/1 & The Alan Turing Institute



• Spatial correlation and joint space-time
• Multivariate modelling and compound events
• Probabilistic framework
• Extension to future projections

• Handle TB of data
• Analyse different climate data sources
• Preserve relevant statistical properties
• Location-based analysis of historical 

climate surface winds (control member)Challenges

Compromises



Methodology



1. Retrieve and process data

• UKCP18 Local – hourly
• EURO-CORDEX EUR-11 – 3-hourly 
• Observations – 10-minute

2. Test downscaling models

Downscale climate wind timeseries to sub-hourly:
• ARIMA – statistical model
• Auto-Encoders – unsupervised ML model
• LSTM – supervised ML model

3. Validation

Model performance measured against observations:
• Wind ramp – large change in wind speed in a short period
• Wind drought – low wind speeds over a long period

S1

S2



Baseline analyses



Wind ramp events
Maximum change in capacity factor above a threshold, 
within a given time window.

Wind drought events
Ratio of time capacity factor is below a threshold, 
within a given time window. 

Declustering
Group events exceeding threshold into independent 
clusters; retain only most extreme.



Ramp events Drought events

S2
S1

430 132847 227 279

331 98646 178 259

41 1174 33 68

51 389 23 56



Auto-Encoders
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Train: 2 months; Predict 1 month

Train: 1 month; Predict: 1 week

Train: 17 years; Predict: 2 years

(a)
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Long-Short Term Memory



Forget gate Input gate Output gate

Cell state

Hidden state

X

X

+

X

σ σ σtanh

tanh

Current input

Output



l.r. 0.00001

l.r. 0.001 l.r. 0.001

l.r. 0.00001

Increased model complexity
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LSTM
Model

Predicted results (ŷ)
Sub-hourly values

Features (X)
Hourly values

12:00  13:00

13:00  14:00 13:10  13:20  13:30  13:40  13:50

Labels (y)
Sub-hourly values

12:10  12:20  12:30  12:40  12:50

Dataset: 10 minute windspeed observations



Features (X)
Hourly av – Obs

Labels (Y)
10-min – Obs

LSTM
Model

Predicted results (ŷ)
10-min values



Ramp events Drought events

S2
S1

p-value      0.21 0.01

p-value      0.24 0.11

p-value      0.79 0.75

p-value      0.87 0.36



Features (X)
Daily av – EUR11

Labels (Y)
3 hourly – EUR11

LSTM
Model

Predicted results (ŷ)
3-hourly values



Ramp events Drought events

S2
S1 p-value      0.79 0.30

p-value      0.60  0.69 p-value      0.01 0.00

p-value      0.19 0.00



Summary



Help improve information used to support decisions for
security of future electricity supply under climate change uncertainty

• Machine Learning models tested for temporal downscaling wind climate data to sub-hourly timescales
• Preserve relevant statistical properties such as long-term variability and extremes
• Selected different climate models and offshore locations
• Model performance measured against wind ramp and wind drought metrics

UKCP18 Local captures both ramps and droughts better than EUR-11

Auto-Encoders can reproduce 10-min timeseries over period of few months, but not in longer term nor extremes

LSTM can improve climate-scale predictability of wind ramps and wind droughts, outperforming linear interpolation



Over to you…
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