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Why Recurrent 
Neural Networks?
• Motivation: coupled DA presents extreme 

computational demands, balancing resolution, DA, 
and coupled model components


• RNNs discussed here show excellent skill in forecasting 
chaotic dynamics  
(Jason Platt et al., 2022; Griffith et al., 2012; Pathak et al., 
2018)


• Successful:

• Reproduction of Lyapunov spectrum 

(Pathak et al, 2017)


• Error growth/covariance estimation

• Integration with DA in Lorenz96 

(Stephen Penny et al., 2022)

Error in LETKF with RNN surrogate models.

From (Stephen Penny et al., 2022)





RNNs in Geophysical 
Fluids
• The picture is less than rosy when used to emulate 

geophysical fluids, or processes dependent on them

• Here: emulate SST evolution in Gulf of Mexico, 

based on 1/25 degree reanalysis dataset

• What spatial scales can we expect to recover?

• What’s causing smoothing?

• Is it jumps due to DA?

• Temporal subsampling (data available every 6hrs)?

• Multivariate interactions not being captured?
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Goals


• Understand how subsampling data 
impacts resolved scales

• Build intuition behind RNN 

• The picture is less than rosy when used to emulate 
geophysical fluids, or processes dependent on them

• Here: emulate SST evolution in Gulf of Mexico, 

based on 1/25 degree reanalysis dataset

• What spatial scales can we expect to recover?

• What’s causing smoothing?

• Is it jumps due to DA?

• Temporal subsampling (data available every 6hrs)?

• Multivariate interactions not being captured?



Which RNNs?

• Single hidden layer


• Only* train output layer, 


• Results in fast, linear solve


• … *however, have to optimize/tune global 
parameters, 
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• Note: hidden space holds memory => 
usually higher dimensional than input!



Nonlinear Vector 
Auto-Regression

• Hidden state filled directly from 
input state, we control:


• interactions between system 
nodes or grid cells (e.g. 
polynomial)


• memory via number of time 
lagged states to include

r(t + 1) = f(r(t), u(t); θ)

r(t + 1) = [u2
1 u2

2 u1u2 u1 u2 1]
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Subsampling: n=16

• See similar picture to GoM results: 
qualitative resemblance, but overly 
smooth


• Kinetic energy density spectrum: as 
time progresses, small scale features 
are damped
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Truth

n = 16

Prediction

n = 16



No subsampling: n=1 

• Good skill at first


• Eventually, small scale artificial 
instabilities are generated


• Spectrum shows larger amplitude 
than expected at small scales 

Truth

n = 1

Prediction

n = 1



Tradeoff: Smooth & Stable -vs- Early Skill & Blowup



Memory ~ Sampling



Memory ~ Sampling
• Up to a point, subsampled output can recover 

skill of predictions with no subsampling

• But, simple quadratic polynomials do not contain 
nonlinearity to handle these time lagged states
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Memory ~ Sampling
• Up to a point, subsampled output can recover 

skill of predictions with no subsampling

• But, simple quadratic polynomials do not contain 
nonlinearity to handle these time lagged states

• Inaccuracy or uncertainty in nonlinearity is 
detrimental to NVAR (Zhang & Cornelius, 2022)

How to get decent early 
prediction skill with stability?
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Reservoir Computing
Generate randomly:


•  , sparse 
then re-scale by desired spectral radius


• , dense

Â ∼ 𝒰[−1,1]

Win ∼ 𝒰[−σ, σ]

r(t + 1) = f(r(t), u(t); θ)

r(t + 1) = tanh (Ar(t) + Winu(t) + b)

u(t) u(t+1)

r(t) r(t+1)
A

Win

Connection to what we’ve seen:


• RC is a generalization of NVAR 
(Bollt, 2021)


• Well-tuned NVAR reproduces time stepping 
stencil (Tse-Chun Chen et al., 2022) 



Summary and conclusions

• Temporal sampling naturally lends itself to smoothing or instability, 
something to consider when training on reanalysis datasets

• Outlook: conservation laws or information to constrain this process? 
Or do we really need to train those individual matrix weights…

• RC shows promise, but strongly dependent on optimization of 
hyperparameters

• NVAR provides intuition behind hidden state, memory effects, but 
suffers from heavy-handed architecture and scaling issues
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