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Motivation

Ensemble forecasts typically show systematic biases and lack calibration.

Post-processing can successfully correct errors and has become a standard practice in research and
operations.

Overview of the state of the art: Vannitsem et al. (2021)

Statistical Postprocessing for Weather Forecasts — Review,
Challenges and Avenues in a Big Data World @

Stéphane Vannitsem &% ; John Bjgrnar Bremnes; Jonathan Demaeyer; Gavin R. Evans; Jonathan Flowerdew;
Stephan Hemri; Sebastian Lerch; Nigel Roberts; Susanne Theis; Aitor Atencia ... Show more

Bull. Amer. Meteor. Soc. 1-44.
https://doi.org/10.1175/BAMS-D-19-0308.1
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While various methods have been developed for univariate post-processing for single locations, lead times or
weather variables, many applications require accurate models of multivariate dependencies.

Key examples include hydrological applications, air traffic management and energy forecasting.
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(a) Stations with temperature data (b) Stations with wind speed data
a ECMWF 2-day ahead

50-member ensemble
forecasts (temperature &
wind speed at 00 UTC)

® 16 auxiliary variables

Altitude Altitude
available as additional
predictors + station 750 750
information 500 500
® 2007-2015 for training, 250 250
2016 for evaluation 0 0

& focus: spatial dependencies
across stations
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State of the art approaches for multivariate post-processing st

Two-step approaches separately model univariate (marginal) distributions and multivariate dependencies:
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State of the art approaches for multivariate post-processing st

Two-step approaches separately model univariate (marginal) distributions and multivariate dependencies:
@ Univariate post-processing: Distributional regression models correct systematic biases and lack of
calibration. A sample is generated from the post-processed distributions.

® simple standard approach: ensemble model output statistics (EMOS, Gneiting et al., 2005, MWR)
a state of the art: ML methods allow for incorporating additional predictors (e.g., NN-based methods, Rasp and
Lerch, 2018, MWR)
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State of the art approaches for multivariate post-processing < et

Two-step approaches separately model univariate (marginal) distributions and multivariate dependencies:
@ Univariate post-processing: Distributional regression models correct systematic biases and lack of
calibration. A sample is generated from the post-processed distributions.
® simple standard approach: ensemble model output statistics (EMOS, Gneiting et al., 2005, MWR)
a state of the art: ML methods allow for incorporating additional predictors (e.g., NN-based methods, Rasp and
Lerch, 2018, MWR)
@ Multivariate dependencies are restored by applying copula-based methods to re-order the sample values.
Prominent examples:
a ensemble copula coupling (ECC): based on dependence structure in the raw ensemble
® Schaake shuffle (SSh): as ECC, but based on past observations
® Gaussian copula approach (GCA): parametric approach based on Gaussian copulas
Comparative studies indicate that there is no consistently best approach and differences in performance
are generally small.
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Limitations of state of the art approaches

All state of the art methods for multivariate post-processing share common key limitations.

Most importantly, there is no straightforward way to include additional predictors beyond the target variable in
the second step of restoring multivariate dependencies.

Further, the number of samples from the multivariate forecast distribution is limited by the size of the ensemble
(ECC) or the historical dataset (SSh).
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Limitations of state of the art approaches

All state of the art methods for multivariate post-processing share common key limitations.

Most importantly, there is no straightforward way to include additional predictors beyond the target variable in
the second step of restoring multivariate dependencies.

Further, the number of samples from the multivariate forecast distribution is limited by the size of the ensemble
(ECC) or the historical dataset (SSh).

We propose a novel nonparametric multivariate post-processing method based on generative ML.

Samples are directly obtained as output of a generative deep neural network which allows for
® incorporating arbitrary input predictors

& circumventing the two-step structure of traditional methods to simultaneously model distributions and
multivariate dependencies

® generating an arbitrary number of samples.

Sebastian Lerch: Generative ML methods for multivariate post-processing Sebastian.Lerch@kit.edu



Ui

Generative ML
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Generative ML

Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/
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Generative ML

Generative ML aims at learning properties underlying a training dataset
to generate realistic new data.

Implicit generative models aim to provide a representation of the proba-
bility distribution of a target variable by defining a stochastic procedure
to generate samples.

Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/
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Generative ML

Generative ML aims at learning properties underlying a training dataset
to generate realistic new data.

Implicit generative models aim to provide a representation of the proba-
bility distribution of a target variable by defining a stochastic procedure
to generate samples.

Impressive results have been achieved by GANs for image processing
tasks, but GAN training tends to be challenging.

We aim for a conditional generative model of the form
Yi=ge(X, Z)), (1)

where the discriminator part of a GAN is replaced by a suitable multi-
variate evaluation metric (the energy distance).

Multivariate samples Y; are generated as the output of a NN, conditional
on ensemble forecasts X and random noise Z;.

Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/
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Conditional generative model for multivariate post-processing ...

Inputs:
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Experimental setup

Independently for both temperature and wind speed:
@ Randomly pick a station location
@ Select the d — 1 closest stations (with d = 5, 10, 20)
® Generate multivariate probabilistic forecasts with benchmark and CGM approaches.

The above procedure is repeated 100 times, the results in the following summarize the variability across
repetitions via boxplots.

Benchmark methods: EMOS + ECC; EMOS + GCA; DRN + ECC; DRN + GCA
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Results: Univariate performance

Mean CRPS
Temperature Wind speed
$
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Methods

Methods B8 Rawensemble B3 EMOS B DRN B3 cGM
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Results: Multivariate performance
. Raw  EMOS+ EMOS+ DRN+  DRN+

Variable Score d ons. ECC GCA ECC GCA CGM
5 2.81 2.27 2.27 1.97 1.97 1.97

ES 10 4.22 3.37 3.37 2.91 2.90 2.91

20  6.09 4.87 4.87 4.21 4.22 4.26

Temperature 5 8.22 4.81 4.36 4.12 3.74 3.50
VS 10 390 22.6 21.0 19.5 18.0 16.9

20 153 96.7 92.8 85.0 80.7 77.8

5 2.44 1.69 1.68 1.56 1.55 1.44

ES 10 3.67 2.55 2.53 2.31 2.30 2.16

20  5.04 3.52 3.51 3.23 3.22 3.04

Wind speed 5 9.49 4.37 4.00 401 3.66 3.31
VS 10  39.7 20.2 19.0 18.0 16.9 15.4

20 153 82.5 78.9 75.6 72.3 67.0
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Results: Multivariate performance ‘(IT
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Results: Multivariate performance

Skill scores (improvement over EMOS + ECC)

Skill scores (improvement over EMOS + ECC)
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Skill scores (improvement over EMOS + ECC)
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On the effects of including additional predictors
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Results: Sample size

Skill scores (improvement over CGM with 50 samples)

(a) Temperature

Energy skill score

Variogram skill score
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Discussion and conclusion

We propose a nonparametric multivariate post-processing method based on a conditional generative ML model.

Our generative model outperforms state-of-the-art two-step methods for multivariate post-processing in two
case studies on spatial dependencies.
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Discussion and conclusion

We propose a nonparametric multivariate post-processing method based on a conditional generative ML model.

Our generative model outperforms state-of-the-art two-step methods for multivariate post-processing in two
case studies on spatial dependencies.

Main conceptual advantage: Ability to incorporate additional predictors.

Computational costs are manageable: even for d = 20, the estimation of an ensemble of 10 CGMs takes
around 2 minutes on a GPU.
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Discussion and conclusion

We propose a nonparametric multivariate post-processing method based on a conditional generative ML model.

Our generative model outperforms state-of-the-art two-step methods for multivariate post-processing in two
case studies on spatial dependencies.

Main conceptual advantage: Ability to incorporate additional predictors.

Computational costs are manageable: even for d = 20, the estimation of an ensemble of 10 CGMs takes
around 2 minutes on a GPU.

Main challenges and opportunities for future work include multivariate evaluation for extremes, and applications
to spatial forecast fields.

Chen, J., Janke, T., Steinke, F., and Lerch, S. (2022). Generative machine learning methods for multivariate
ensemble post-processing, https://doi.org/10.48550/arXiv.2211.01345.

Code is available at https://github.com/jieyu97/mvpp.
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