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Ensemble forecasts typically show systematic biases and lack calibration.

Post-processing can successfully correct errors and has become a standard practice in research and
operations.

Overview of the state of the art: Vannitsem et al. (2021)

While various methods have been developed for univariate post-processing for single locations, lead times or
weather variables, many applications require accurate models of multivariate dependencies.

Key examples include hydrological applications, air traffic management and energy forecasting.
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Figure 1: Locations of weather stations with (a) temperature and (b) wind speed observations.

(2018), while the dataset for wind speed4 was compiled for this study. Both datasets are based
on forecasts from the 50-member ensemble of the European Center of Medium-range Weather
Forecasts (ECMWF) initialized at 00 UTC every day, which were obtained from the THORPEX
Interactive Grand Global Ensemble (TIGGE) database (Bougeault et al., 2010) on a 0.5◦× 0.5◦

grid over Europe. Following the procedure outlined in Rasp and Lerch (2018), the ensemble
forecasts of all meteorological predictor variables are interpolated to weather station locations
over Germany. Stations with larger fractions of missing data and with altitudes above 1 000 m are
omitted to avoid outliers due to substantially different topographical properties when considering
spatial dependencies. This results in a total of 419 stations in the temperature dataset and 198
stations in the wind speed dataset, the locations of which are shown in Figure 1. Corresponding
observations were obtained from the Open Data Server5 of the German weather service.

In addition to ensemble forecasts of the target variables (temperature and wind speed, respec-
tively), ensemble forecasts of several auxiliary predictor variables based on the selection in Rasp
and Lerch (2018) are available. Ensemble forecasts of all meteorological predictor variables are
reduced to their mean and standard deviation, and for the target variables we additionally com-
pute the maximum and minimum ensemble member forecast and their interval length. For the
wind speed dataset, we also explicitly compute the wind speeds at different pressure levels from
the corresponding wind components. Further, we use a sine-transformed value of the day of the
year and relevant information about the station coordinates, altitudes and orography (altitude
of the model grid point) as additional input predictors for the post-processing models. Table 1
provides an overview of all available predictors in both datasets.

For both datasets, a total of 10 years of daily forecast and observation data from 2007–2016
are available. Following Rasp and Lerch (2018), we use data from 2007–2014 as training set and
2015 as validation set for the post-processing models. Data from 2016 serves as test dataset.

3 Benchmark methods for multivariate ensemble post-processing

This section introduces state-of-the-art approaches to multivariate post-processing which serve
as benchmark methods for our generative machine learning method that will be introduced in

4The dataset is available from https://doi.org/10.6084/m9.figshare.19453622.
5https://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html
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Two-step approaches separately model univariate (marginal) distributions and multivariate dependencies:

1 Univariate post-processing: Distributional regression models correct systematic biases and lack of
calibration. A sample is generated from the post-processed distributions.

simple standard approach: ensemble model output statistics (EMOS, Gneiting et al., 2005, MWR)
state of the art: ML methods allow for incorporating additional predictors (e.g., NN-based methods, Rasp and
Lerch, 2018, MWR)

2 Multivariate dependencies are restored by applying copula-based methods to re-order the sample values.
Prominent examples:

ensemble copula coupling (ECC): based on dependence structure in the raw ensemble
Schaake shuffle (SSh): as ECC, but based on past observations
Gaussian copula approach (GCA): parametric approach based on Gaussian copulas

Comparative studies indicate that there is no consistently best approach and differences in performance
are generally small.
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All state of the art methods for multivariate post-processing share common key limitations.

Most importantly, there is no straightforward way to include additional predictors beyond the target variable in
the second step of restoring multivariate dependencies.

Further, the number of samples from the multivariate forecast distribution is limited by the size of the ensemble
(ECC) or the historical dataset (SSh).

We propose a novel nonparametric multivariate post-processing method based on generative ML.

Samples are directly obtained as output of a generative deep neural network which allows for

incorporating arbitrary input predictors

circumventing the two-step structure of traditional methods to simultaneously model distributions and
multivariate dependencies

generating an arbitrary number of samples.
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Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/

Generative ML aims at learning properties underlying a training dataset
to generate realistic new data.

Implicit generative models aim to provide a representation of the proba-
bility distribution of a target variable by defining a stochastic procedure
to generate samples.

Impressive results have been achieved by GANs for image processing
tasks, but GAN training tends to be challenging.

We aim for a conditional generative model of the form

Y i = gθ(X , Z i), (1)

where the discriminator part of a GAN is replaced by a suitable multi-
variate evaluation metric (the energy distance).

Multivariate samples Y i are generated as the output of a NN, conditional
on ensemble forecasts X and random noise Z i .

6 Sebastian Lerch: Generative ML methods for multivariate post-processing Sebastian.Lerch@kit.edu

Generative ML

https://thispersondoesnotexist.com/


Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/

Generative ML aims at learning properties underlying a training dataset
to generate realistic new data.

Implicit generative models aim to provide a representation of the proba-
bility distribution of a target variable by defining a stochastic procedure
to generate samples.

Impressive results have been achieved by GANs for image processing
tasks, but GAN training tends to be challenging.

We aim for a conditional generative model of the form

Y i = gθ(X , Z i), (1)

where the discriminator part of a GAN is replaced by a suitable multi-
variate evaluation metric (the energy distance).

Multivariate samples Y i are generated as the output of a NN, conditional
on ensemble forecasts X and random noise Z i .

6 Sebastian Lerch: Generative ML methods for multivariate post-processing Sebastian.Lerch@kit.edu

Generative ML

https://thispersondoesnotexist.com/


Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/

Generative ML aims at learning properties underlying a training dataset
to generate realistic new data.

Implicit generative models aim to provide a representation of the proba-
bility distribution of a target variable by defining a stochastic procedure
to generate samples.

Impressive results have been achieved by GANs for image processing
tasks, but GAN training tends to be challenging.

We aim for a conditional generative model of the form

Y i = gθ(X , Z i), (1)

where the discriminator part of a GAN is replaced by a suitable multi-
variate evaluation metric (the energy distance).

Multivariate samples Y i are generated as the output of a NN, conditional
on ensemble forecasts X and random noise Z i .

6 Sebastian Lerch: Generative ML methods for multivariate post-processing Sebastian.Lerch@kit.edu

Generative ML

https://thispersondoesnotexist.com/


Artificial, GAN-generated images of human faces,
Source: https://thispersondoesnotexist.com/

Generative ML aims at learning properties underlying a training dataset
to generate realistic new data.

Implicit generative models aim to provide a representation of the proba-
bility distribution of a target variable by defining a stochastic procedure
to generate samples.

Impressive results have been achieved by GANs for image processing
tasks, but GAN training tends to be challenging.

We aim for a conditional generative model of the form

Y i = gθ(X , Z i), (1)

where the discriminator part of a GAN is replaced by a suitable multi-
variate evaluation metric (the energy distance).

Multivariate samples Y i are generated as the output of a NN, conditional
on ensemble forecasts X and random noise Z i .

6 Sebastian Lerch: Generative ML methods for multivariate post-processing Sebastian.Lerch@kit.edu

Generative ML

https://thispersondoesnotexist.com/


𝒔(1), … , 𝒔(𝑑)

𝒛𝑖 ~𝒩
𝑑latent 𝟎, 𝑰

𝒚mean

𝜹 ⨀ 𝒛𝑖

𝜹

ෝ𝒚𝑖 = 𝑓 𝒚mean + 𝒚𝑖
noise

𝒚𝑖
noise

Inputs:

Latent variables:

Outputs:

ഥ𝑿(1), … , ഥ𝑿(𝑑)

ഥ𝑿(1), … , ഥ𝑿(𝑑), 𝒔(1), … , 𝒔(𝑑), 𝐥𝐨𝐜(1), … , 𝐥𝐨𝐜(𝑑), doy

ℎmean: 
Linear model

ℎ𝜹:
Multiple dense layers

1)

2)

3)

𝑑, 𝐾

𝑑latent, 𝑛out
*Activation f: 
linear (“t2m”) or 
softplus (“ws”)

𝑑latent, 1

𝑑latent, 𝑛out

𝑑, 𝑛out

𝑑, 𝑛out

𝑑, 𝐾

𝑑, (2𝐾 + 5)

𝑑, 𝑛out

ℎnoise:
Multiple 
dense layers

7 Sebastian Lerch: Generative ML methods for multivariate post-processing Sebastian.Lerch@kit.edu

Conditional generative model for multivariate post-processing



Independently for both temperature and wind speed:

Randomly pick a station location

Select the d − 1 closest stations (with d = 5, 10, 20)

Generate multivariate probabilistic forecasts with benchmark and CGM approaches.

The above procedure is repeated 100 times, the results in the following summarize the variability across
repetitions via boxplots.

Benchmark methods: EMOS + ECC; EMOS + GCA; DRN + ECC; DRN + GCA
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Results: Univariate performance



Table 2: Mean multivariate scores of different multivariate post-processing methods for temper-
ature and wind speed, averaged over the 100 repetitions of the simulation experiment.

Variable Score d
Raw
ens.

EMOS+
ECC

EMOS+
GCA

DRN+
ECC

DRN+
GCA

CGM

Temperature

ES
5 2.81 2.27 2.27 1.97 1.97 1.97
10 4.22 3.37 3.37 2.91 2.90 2.91
20 6.09 4.87 4.87 4.21 4.22 4.26

VS
5 8.22 4.81 4.36 4.12 3.74 3.50
10 39.0 22.6 21.0 19.5 18.0 16.9
20 153 96.7 92.8 85.0 80.7 77.8

Wind speed

ES
5 2.44 1.69 1.68 1.56 1.55 1.44
10 3.67 2.55 2.53 2.31 2.30 2.16
20 5.04 3.52 3.51 3.23 3.22 3.04

VS
5 9.49 4.37 4.00 4.01 3.66 3.31
10 39.7 20.2 19.0 18.0 16.9 15.4
20 153 82.5 78.9 75.6 72.3 67.0

forecasts lead to better performance in terms of the VS. The CGM consistently provides the
best multivariate forecasts and outperforms the state-of-the-art approaches across the variables,
dimensions and evaluation metrics. The only exception to this observation are temperature
forecasts evaluated with the ES, where the DRN+ECC and DRN+GCA models provide slightly
better forecasts for d = 10 and d = 20. The values of all considered multivariate scoring rules
increase with the spatial dimension d, which is to be expected from the definition of the scoring
rules and consistent with findings in the extant literature.

To investigate the variability across the selected sets of stations, Figures 4 and 5 show box plots
of the multivariate skill scores for temperature and wind speed, respectively, using EMOS+ECC
as reference method. For the temperature forecasts (Figure 4), the DRN-based two-step methods
and the CGM provide consistent and comparable improvements over the reference in terms of
the ES. The relative improvements in terms of the VS show a larger variability across the sets of
stations, and indicate a superior performance of the CGM forecasts. Among the considered two-
step approaches, applying GCA leads to improvements over ECC in terms of the VS, but similar
results in terms of the ES. The above observations apply consistently to all considered spatial
dimensions and we do not observe any obvious trends in terms of d, indicating that consistent
improvements can be observed also in the higher-dimensional settings in the experiments.

Qualitatively similar results can be observed for the multivariate wind speed forecasts shown in
Figure 5. The main difference to the results for temperature are the notably larger improvements
of the CGM forecasts in comparison to the DRN-based approaches, particularly in terms of the
ES. Interestingly, in terms of the VS at d = 5, the DRN+ECC models here fail to outperform
the EMOS+GCA forecasts despite the incorporation of additional predictor variables in the
marginal distributions. A potential explanation for this observation is that the disadvantages due
to the misspecifcations in the multivariate dependence structure of the raw ensemble forecasts
which serve as a dependence template for ECC outweigh the benefits of incorporating additional
predictors in the marginal distributions. Similar to the temperature forecasts, the DRN+GCA
model results in better forecasts than the DRN+ECC approach, but performs notably worse
than the CGM.

Tables 3 and 4 show the rejection rates of DM tests of equal predictive performance and
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Figure 4: Box plots of (a) energy skill scores and (b) variogram skill scores of different mul-
tivariate post-processing methods for temperature across the 100 repetitions of the
experiment with different sets of stations. EMOS+ECC is used as reference forecast
in both cases.

thus allow for quantifying the statistical significance of the observed score differences between
the multivariate post-processing methods across the repetitions of the experiment. In line with
the results from above, we find that the observed score differences are significant to a large
degree. The CGM forecasts show significant improvements over the other methods with the
exception of temperature forecasts evaluated with the ES. For example, the null hypothesis of
equal predictive performance is rejected in at least 99% of all cases in favor of the CGM forecasts
when compared to all two-step approaches for wind speed, where we further do not observe a
single case where the CGM is outperformed significantly by any one of the other models. In
particular in terms of the ES, the differences between the multivariate re-ordering approaches
tend to not be significant, with the notable exception of the EMOS+GCA approach showing
comparable performance to the DRN+ECC model in case of wind speed forecasts evaluated
with the VS.

Additional verification results including assessments of multivariate calibration and results for
other multivariate proper scoring rules are available in the Supplemental Material.
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Figure 5: As Figure 4, but for wind speed.
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thus allow for quantifying the statistical significance of the observed score differences between
the multivariate post-processing methods across the repetitions of the experiment. In line with
the results from above, we find that the observed score differences are significant to a large
degree. The CGM forecasts show significant improvements over the other methods with the
exception of temperature forecasts evaluated with the ES. For example, the null hypothesis of
equal predictive performance is rejected in at least 99% of all cases in favor of the CGM forecasts
when compared to all two-step approaches for wind speed, where we further do not observe a
single case where the CGM is outperformed significantly by any one of the other models. In
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Figure 5: As Figure 4, but for wind speed.
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Appendix B On the role of additional inputs for the CGM
predictive performance
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Figure 8: Box plots of energy skill scores and variogram skill scores of different multivariate
post-processing methods analogous to Figures ... and ... for d = 10, but including
a CGM variant without additional inputs. EMOS+ECC is used as reference forecast
throughout.

To assess the importance of incorporating additional input features for the CGM performance,
Figure Figure 8 includes a CGM variant which only uses ensemble forecasts of the target variable
as input. While this CGM variant has access to the same information as the EMOS+ECC and
EMOS+GCA model,s it generally shows superior predictive performance, indicating improve-
ments of the CGM approach beyond utilizing additional input features only. While the CGM
variant without additional inputs typically fails to achieve forecast performance comparable to
the DRN-based models, it on average outperforms the DRN+ECC model for wind speed in
terms of the VS.
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5.5. CGM sample size

In addition to incorporating arbitrary predictor variables, a particular advantage of the proposed
CGM approach over ECC is that the generative procedure allows for generating an arbitrary
number of samples from the multivariate predictive distribution instead of being limited to the
number of ensemble members. To investigate the effect of the size nout of the generated CGM
ensemble, Figure 6 shows box plots of the multivariate skill scores as functions of the ensemble
size, based on the 100 repetitions of the experiment for d = 10. As before, we repeat the model
estimation procedure of the CGM approach 10 times and generate nout

10 samples each time to
obtain a final post-processed ensemble of size nout.

Compared to the reference setting of 50 CGM ensemble members, generating a larger sam-
ple from the post-processed distributions generally improves the predictive performance, with
median improvements in terms of the energy and variogram score of up to around 1.5%. The
median skill score values increase notably up to an ensemble size of 200, after which some minor
improvements can be observed. Additional results on Diebold-Mariano tests and other values
of d are provided in the supplemental material.

Given a fixed CGM ensemble size nout, various ensembling strategies for obtaining these nout

forecasts could be devised. For example, to obtain 50 CGM members, one could repeat the CGM
model estimation 50 (or 25, 10, 5, 2, 1) time(s) and generate 1 (or 2, 5, 10, 25, 50) sample(s)
each, respectively. While we found that in general, increasing the number of model runs leads to
larger improvements in predictive performance compared to increasing the number of generated
samples, this needs to be balanced against the added computational costs for repeating the
CGM estimation. More details on the effects of different ensembling strategies are provided in
Appendix A.
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Figure 6: Box plots of energy skill scores and variogram skill scores of CGM forecasts with
different numbers of samples generated from the multivariate post-processed forecast
distribution for (a) temperature and (b) wind speed over the 100 repetitions of the
experiment with different sets of stations. The CGM approach with nout = 50 is used
as reference forecast and we only consider the case d = 10 here.
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We propose a nonparametric multivariate post-processing method based on a conditional generative ML model.

Our generative model outperforms state-of-the-art two-step methods for multivariate post-processing in two
case studies on spatial dependencies.

Main conceptual advantage: Ability to incorporate additional predictors.

Computational costs are manageable: even for d = 20, the estimation of an ensemble of 10 CGMs takes
around 2 minutes on a GPU.

Main challenges and opportunities for future work include multivariate evaluation for extremes, and applications
to spatial forecast fields.

Chen, J., Janke, T., Steinke, F., and Lerch, S. (2022). Generative machine learning methods for multivariate
ensemble post-processing, https://doi.org/10.48550/arXiv.2211.01345.

Code is available at https://github.com/jieyu97/mvpp.
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