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● Introduction and motivation

● Deep Learning for super-resolution and empirical downscaling

● DL4DS library

● Applications of DL4DS

● Next steps



Introduction
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AI for Earth Sciences

Earth Sciences Artificial Intelligence AI/ML engineering

● Problem definition 

● Domain expertise

● Data sources 

● Baseline approaches

● Validation metrics

● Framing Earth science 

problems from a ML 

point of view

● Identification and 

development of ML 

methods for ES needs

● Development of robust, 

efficient and open code

● Smart testing and model 

design/tuning

● Reproducibility

● Scalability (HPC-ready)
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AI for Earth Sciences

● Common tasks between AI or 

Computer Vision and Earth Sciences:
○ Time series forecasting → regression

○ Next frame video prediction → 

weather forecasting (nowcasting)

○ Super-resolution → empirical 

downscaling

○ Object recognition → pattern finding 

and detection

○ Inpainting → missing data filling

○ Image to image (domain) translation 

→ transfer functions, surrogate 

models
Reichstein et al. 2019
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Climate models

● Climate models use equations to represent 
the processes and interactions that drive 
the Earth’s climate

○ atmosphere, oceans, land and ice-covered 
regions

● Based on Fundamental physical principles, 
that is the laws and equations that underpin 
scientists’ understanding of the physical, 
chemical and biological mechanisms going 
on in the Earth system

○ E.g., Navier-Stokes equations of fluid motion, laws 
of thermodynamics, etc

● These equations are solved “numerically” in 
the model, which means they are 
approximated

Credits: www.carbonbrief.org
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Climate models and downscaling

● The idea of downscaling is to bridge 

the gap between the large spatial 

scales repre- sented by GCMs to the 

smaller scales required for 

assessing regional climate change 

and its impacts

● Dynamical downscaling is very 

expensive
○ Increasing the spatial resolution of a 

model by a factor of two will require 

∼10x more computing power
Increasing spatial resolution of climate models used through the first 
four IPCC assessment reports: 1990, 1995, 2001, 2007 (Credits: 
www.carbonbrief.org)
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Motivation 

● Resolution in EO depends on the satellite orbit configuration and sensor design 

while for ES dynamical models is a matter of computational budget

● Having more resolution (giving local insights) is important for many societal 

applications

● Statistical downscaling techniques present an alternative approach for learning links 

between the large- and local-scale climate in a more efficient way

● It enables: 
○ Integration of multiple predictors (e.g., atmospheric and auxiliary variables)

○ Data fusion (other data modalities, e.g., meteo and satellite data)
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Super-resolution and statistical downscaling

● The terms “statistical downscaling” 

and “bias correction” are used 

differently in different communities 

and countries (Maraun and 

Widmann 2018)

● Different meaning depending on 

the field (EO, weather science, S2S, 

atm. composition, hidrology)

● In this presentation, we mainly deal 

with spatial super-resolution of 

gridded data (EO, weather, climate)

Gomez Gonzalez 2022



Deep Learning for 
super-resolution and 

empirical downscaling
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Deep Learning (supervised fashion)
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Convolutions in a nutshell

2D convolution using a kernel size of 3 (sliding 
shadow) with stride of 1 and padding

96 convolutional kernels of size 11×11×3 

learned by the first convolutional layer of 

an image classification CNN. From 

Krizhevsky et al. 2012

Input

Activation map 
(output)

● The convolutional layer is the core building block of a CNN and does most of the 
computational heavy lifting

● Its parameters consist of a set of learnable filters (see image on the top right)
● How: dot products between the entries of the filter and the input (sliding fashion)
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Convolution-based super-resolution

Wang, et al. 2020

Upscaling methodsModel family Model architectures
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DL-based super-resolution → empirical downscaling

● SR ideas have inspired DL-based downscaling methods in climate science, e.g., 

Vandal et al. 2017, Leinonen et al. 2020, Stengel et al. 2020, Wang et al. 2021, etc

● Beware! Downscaling (climate science) == upscaling or super-resolution (computer 

vision), i.e., transfer from a lower- to higher-resolution grid



DL4DS library
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DL4DS – Deep Learning for empirical DownScaling

● DL4DS - python library that implements a wide variety of state-of- 
the-art and novel algorithms for downscaling gridded Earth Science data 
with deep neural networks

● Article: “DL4DS — Deep Learning for empirical DownScaling” (Gomez 
Gonzalez, in press, Environmental Data Science journal)

● Written on top Tensorflow/Keras DL framework
○ Uses Horovod for distributed GPU training

● The models learn inter-variable spatial and spatio-temporal 
relationships for cross-scale translation (LowRes -> HighRes)

● These algorithms can be applied to downscale/super-resolve any 
gridded climate/EO dataset 

● Code and tutorial: https://github.com/carlos-gg/dl4ds
● Documentation: https://carlos-gg.github.io/dl4ds/
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DL4DS – Deep Learning for empirical DownScaling
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A wide variety of architectures are possible by mixing the following design choices:

DL4DS – Deep Learning for empirical DownScaling

Downscaling type Training (loss type) Sample type Backbone section Upsampling method

Explicit pairs of HR and LR 

datasets (MOS)

Supervised 

(non-adversarial)

Spatial Plain convolutional Pre-upsampling via 

interpolation

Implicit pairs, using only HR data 

(PerfectProg) 

Conditional Adversarial Spatio-temporal Residual Post-upsampling via 

sub-pixel convolution

Dense Post-upsampling via resize 

convolution

Unet (pre-upsampling, 

spatial samples)

Post-upsampling via 

deconvolution

Convnext (spatial samples)
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DL4DS building blocks 

Main blocks Spatial convolutional 
block
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DL4DS generators 

● Structure of a supervised network (generator for GANs)

Backbone section 
examples Output module
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DL4DS generators 

● Structure of a supervised network (generator for GANs)

Backbone section 
examples Output module
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DL4DS generative adversarial models

● DL4DS allows training conditional generative adversarial models. Example:

Generator Discriminator
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DL4DS main classes

● StandardScaler, MinMaxScaler
○ Extend scikit-learn normalization classes to ND arrays

● DataGenerator (tf.keras.Sequence)
○ Returns a batch of samples (X, Y) for training

○ All the preprocessing is done here (cropping, resizing, slicing, etc)

● Trainer (SupervisedTrainer and CGANTrainer)
○ Takes care of the training procedure, feeds the networks with training samples over several epochs

○ Saves results to disk

● Predictor
○ Inference on holdout/unseen data
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DL4DS building blocks 

● Blocks as tf.keras layers 
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DL4DS command line app

● DL4DS can be used not only in an interactive session but as 

a command line app (based on absl.flags library)

● A configuration file can be saved with the experiment 

parameters (excerpt shown on the right)

● HPC-friendly: Useful for running long experiments on 

clusters where Jupyterlab is not always available

● A Horovod call to DL4DS is shown in the example below



Applications of DL4DS
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DL4DS tutorial

● Notebook tutorial 
available on GitHub 
(link to Colab)

● Application using the 
downscaling 
benchmark dataset 
prepared by the 
MAELSTROM project

● 2m temperature IFS 
HRES data, 8x scaling 
factor
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NO2 surface concentration from CAMS reanalysis

3-hourly data from 2014 to 2018. Panel (A): reference NO2 surface concentration field 

from the low-resolution CAMS global reanalysis. Panel (B): resampled version, via bicubic 

interpolation, of the low-resolution reference field (overly smoothed and not useful). 

Panel (C): corresponding high-resolution field from the CAMS regional reanalysis. 

CAMS global reanalysis (80km) 8x Interpolated CAMS regional reanalysis (10km)

Gomez Gonzalez 2022
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Benchmark of architectures

Without the intention of a full exploration of possible architectures and learning 

strategies, we chose to compare eight models trained with DL4DS. Different loss 

functions, backbones, learning strategies and other parameters are combined in the 

model architectures detailed in the table above.
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Benchmark of architectures: results

Examples of downscaled products obtained with DL4DS, 

corresponding to the low-resolution input grid shown to the 

right (for the models in the table of the previous slide). 
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Benchmark of architectures: results

Pixel-wise RMSE for each model, computed for the whole year of 2018. The dynamic range is 

shared for all the panels, with a fixed maximum value to facilitate the visual comparison.
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Benchmark of architectures: results

● We find that models trained with explicit pairing perform better than those with 

implicit ones and that a supervised model with residual blocks and SPC upsampling 

provides the best results

● Models trained with a LCB perform better than those without it, thanks to the fact 

that the LCB learns grid point- or location-specific weights
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ECMWF SEAS5 downscaling of precipitation fields

Raw 1° SEAS5 
daily precipitation 

anomalies 
+

encoded DOY

HR 0.1° topography
&

Land-ocean mask

HR 0.1° SEAS5 daily precipitation

Palma et al. (in-prep)

10x downscaling



Next steps
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AI and user-oriented Earth Science applications

- Benchmark data
- APIs for reanalysis, 

GCM/RCM, forecasts 
data

- EO and satellite data

Data Trained DL 
models

Usecase I

Usecase II

- Transfer learning
- Fine tuning
- Online learning 

(model update)- Open source ecosystem of 
libraries for ES problems

- “Repository” for trained 
models (weights and 
specifications)
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Next steps

● DL4DS as ML-package template for other tasks, e.g. weather forecasting

● Additional backbones
○ Transformers, diffusion models, normalizing flows, graph neural networks, Fourier neural operators

● Condition on point/station data – bias correction
○ Adding terms to the GAN loss

○ Neural processes

● Arbitrary scaling factors
○ Implicit neural representations

● Uncertainty estimation techniques
○ Monte Carlo dropout (already implemented in DL4DS)

○ Training ensembles of networks

○ Perturb the inputs (inject noise)

○ Generative modelling techniques
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