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Motivation

• Users want to know when and why machine learning predictions are uncertain due to
– Inherently challenging predictions 
– The model is outside the realm of its training data

• Current machine learning methods provide multiple ways to characterize predictive 
uncertainty
– Discrete probability distribution
– Parameters of parametric distribution
– Generate samples from stochastic model or ensemble

• Problems
– Single-model approaches only account for uncertainty from variance in the training data
– Sampling/ensemble approaches can be slow, computationally expensive, and still underdispersive
– How to propagate model uncertainty into model explanations

• Solutions
– Evidential deep learning: single model that can estimate aleatoric and epistemic uncertainty
– Explainable uncertainty: Apply model -agnostic XAI to tie variations in inputs to variations in uncertainty



Background: Probabilities for classification problems

• Machine learning classification assumes the output is a categorical probability 
distribution with a fixed label
– Example: p(Y) = (0.8, 0.1, 0.1); Y=(1, 0, 0)

• Neural networks estimate these probabilities by using a softmax activation function 
and categorical cross entropy
– Ensures probabilities are between 0 and 1 and sum to 1 across classes
– Categorical cross entropy maximizes the likelihood of the probability for the true class

• However, problems arise when interpreting the uncertainty from this approach
– Probabilities generally overconfident
– Loss only accounts for uncertainty in the data

• Instead: utilize a Bayesian approach to classification
– Assume we are learning to build evidence for each class
– Assume a prior distribution so that we can estimate the posterior distribution
– Posterior distribution is a distribution of possible categorical distributions



Estimating the Uncertainty of a Categorical Distribution

We want to estimate the uncertainty in the predicted probabilities. The Dirichlet distribution is a 
good choice as  the prior for Categorical(K) with free parameter vector 𝛂𝛂 >=1:  

where 

The expected probabilities  can be computed via MLE: 

The pos terior (= prior * likelihood) is  conjugate to the prior (e.g. it' s  also a Dirichlet dis tribution) 



Aleatoric 
● Uncertainty from data variance
● Irreducible: more examples do 

not help; more relevant 
features would be needed 

Epistemic 
● Uncertainty from model 

variance 
● Reducible: more data 

examples can reduce this 
uncertainty

Hullermeier and Waegeman (2020)
arXiv:1910.09457v3

Aleatoric and Epistemic Uncertainties

High Aleatoric Low Aleatoric

High Epistemic Low Epistemic

Aleatoric Epistemic

https://arxiv.org/abs/1910.09457v3


Dirichlet Aleatoric and Epistemic Uncertainties

Law of total uncertainty decomposes  the total uncertainty into the sum of the unexplained variance 
plus  the explained variance: 

Aleatoric (unexplained) = 

Epistemic (explained) = 

Total = Aleatoric + Epis temic



Theory of Evidence

Dempster-Shafer Theory of Evidence (DST), a  generalization of Bayes ian theory of subjective 
probabilities , ass igns  belief masses to subsets  of poss ible labels  for an observation. 

If belief masses  for an observation are all equally likely ~ “I do not know. ”

Subjective logic (SL) formulates  belief assignments bk over K classes , plus  “I don’t know ”, as  a 
Dirichlet dis tribution (prior). For a NN with K outputs  

where bk is  the kth ReLU output, interpreted as  the “belief mass” of the kth class , and u is  the 
uncertainty mass  of the K outputs .

Each bk is  defined as

where and thus  

Sensoy et al. (2018) arXiv:1806.01768v3

https://arxiv.org/abs/1806.01768v3


Theory of Evidence

With 𝛂𝛂i = ei + 1, the Dirichlet probability dens ity function is  again

except now the average probabilities  are computed us ing the evidence for each class :

where 

Sensoy, M., L. Kaplan, and M. Kandemir, 2018: Evidential deep learning to quantify classification uncertainty. 
arXiv [cs.LG], https://arxiv.org/abs/1806.01768.



Full Classifier Evidential Loss

MLE Loss Distance from 0-evidence/uniform prior

Distance 
from 0-
evidence 
prior

= min(1.0, t/50)

MLE Loss

Annealing coefficient Alphas  of mis leading evidence

Pushes  incorrect alphas  toward 1 (uniform dis tribution)

MSE Variance

Sensoy, M., L. Kaplan, and M. Kandemir, 2018: Evidential deep learning to quantify classification uncertainty. 
arXiv [cs.LG], https://arxiv.org/abs/1806.01768.



Benchmark Use Case: Estimating Storm Severity

Data: Simulated storm properties from Molina et al. (2021). 
Storms are extracted from “High Resolution WRF Simulations of the Current and 
Future Climate of North America” dataset (https://rda.ucar.edu/datasets/ds612.0/)

Inputs 
Pressure
Temperature
U wind
V wind
Water Vapor Mixing Ratio
Radar reflectivity (max)
spatially averaged at 3 and 5 km AGL

Target
2-5 km Instantaneous Updraft Helicity > 75 m2 s-2

Training Years: 2001, 2002, 2003, 2005, 2006, 2008, 2009, 2010, 2012
Testing Years: 2000, 2004, 2007, 2011, 2013

Molina, M. J., D. J. Gagne, and A. F. Prein, 2021: A benchmark to test generalization 
capabilities of deep learning methods to classify severe convective storms in a changing 
climate. Earth Space Sci., 8, https://doi.org/10.1029/2020ea001490.

Model
Dense neural network
Hidden layers: 2
Neurons/hidden layer: 100
ReLU activation function
Adam Optimizer
Learning rate: 0.01
Epochs: 30

Testing Results

Model AUC Brier Score

Evidential 0.958 0.0180

Baseline 0.966 0.0179



Partial Dependence with Uncertainty



Aleatoric and Epistemic Partial Dependence



Case: UH Probability



Case: Aleatoric Uncertainty



Case: Epistemic Uncertainty



Case: Neural Network Gradients



Second Benchmark: Precipitation Type Analysis

• Problem: analyze precipitation type
• Input: NOAA Rapid Refresh vertical profile
• Output: mPING precipitation type (rain, snow, sleet, freezing rain)
• Evidential model estimates aleatoric and epistemic uncertainties at all grid cell
• Aleatoric uncertainty high over broad precipitation transition region
• Epistemic uncertainty highest along strong temperature gradients 



Summary and Challenges

Summary
• We implemented an evidential neural network for classification of updraft helicity and 

precipitation type
• Evidential models produce more robust estimates of uncertainty with a 

computationally inexpensive model and minimal architecture changes
• XAI on evidential models can reveal linkages between inputs and predicted 

uncertainty

Challenges
• Developing guidelines for more robust hyperparameter settings
• Evaluating the quality of the epistemic uncertainty estimate
• How best to use aleatoric and epistemic uncertainty in operations and research

Contact David John Gagne
Email: dgagne@ucar.edu
Twitter: @DJGagneDos
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