
Intercomparison of deep learning architectures for 
the prediction of precipitation fields

Objective

• Evaluate the ability of several state-of-the-art DL
architectures to predict daily precipitation fields (1°),
including heavy (>95th percentile) and extreme (>99th

percentile) events, over Europe.
• Provide further insights into the drivers of extreme events

by using layer-wise relevance (LRP) propagation.

Introduction and motivation

• Deep learning (DL) has become an increasingly used tool within the
climate science community.

• DL models can extract patterns from observed precipitation fields and
relate them to the general meteorological situation.

• The use of DL models is computationally much cheaper than physically-
based modelling of the physical processes responsible for precipitation.

Data
Variable name Levels (hPa) Resolution Source
Geopotential height 300,500,700,850,925,1000 1° ERA5
Temperature 300,500,700,850,925,1000 1° ERA5
Relative humidity 300,500,700,850,925,1000 1° ERA5
Wind components 300,500,700,850,925,1000 1° ERA5
Total column water vapor - 1° ERA5

Model Architecture Trainable 
parameters

Dav-orig
CNN model based on [1] that consists of two
convolutional layers, followed by 2x2 max-pooling and a
dense 16-neuron layer. An additional symmetric decoder
part is included.

48,697

Dav-64 As Dav-orig, but with a latent space of dimension 64
(instead of 16). 175,081

CNN-2l CNN encoder-decoder made of two layers, with a latent
space of dimension 64. 740,297

Pan-orig
CNN-model based on [3] that consists of two
convolutional and pooling layers, followed by two dense
layers. An additional symmetric decoder part is included.

233,014

U-Net Similar to the original U-Net architecture; adapted from
[3]. 31,059,073

RaNet Adapted from [4], this architecture consists of 3D CNN, 4
fully connected, following by a symmetric upscaling part. 1,859,627

Fig. 1. First row: true values of the precipitation amount and the
corresponding threshold exceedance for the 95th percentile. Next rows: the
prediction of each model for the same date, in terms of precipitation amount
(first column), the corresponding threshold exceedance (second column), and
the probability of the occurrence of heavy precipitation (third column).
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Fig. 2. a) Ranked averaged relevances obtained through the LRP procedure for heavy
precipitation events in the training sample (1979-2005); b) Number of trainable parameters for
the different architecture sizes for the different subsets of predictors. Note that the number of
trainable parameters changes with the number of input data even though the changes are small;
c) Scores obtained for the U-Net-based networks: U-Net1 (1 level), U-Net2 (2 levels), U-Net3 (3
levels) and U-Net4 (4 levels) for different subsets of predictors according to the LRP-ranking.

a)

b)

c)

Results

DL arquitectures


	Slide Number 1

