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• Realistically representing atmospheric convection is important for 
accurate numerical weather and climate simulations.

• Parameterizing where and when convection occurs (convection trigger) 
is a well-known source of model uncertainty [1,2].

• While some global storm-resolving models omit the convection 
parameterization [3], it is unknown how well they simulate the initiation 
of convection without a parameterization scheme.

How can we improve the representation of convection in climate 
and weather models?

à Develop a probabilistic machine learning (ML) model that predicts the 
probability of the onset of deep convection

• Understand sources of uncertainty and the mechanisms driving the 
initiation of convection

• Characterize errors and assess the realism of convection triggering, 
especially in storm-resolving models

The generation of convective available potential energy from large-scale 
advection (dCAPE) is the most important predictor of convection, followed 
by specific humidity and the lifting condensation level (LCL).
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The ML model captures the diurnal cycle and time series of precipitating 
convection reasonably well.

Machine learning model: Random forest

• Randomly under-sample non-convective events to rebalance dataset
• Bayesian hyperparameter optimization to tune model settings
• Probability calibration (sigmoid method) • Further model development

• Use global precipitation and reanalysis datasets to expand the ML model 
globally (not site-specific)

• Evaluate storm-resolving simulations of convection triggering using the 
probabilistic ML model 

• Implement the probabilistic ML model as a stochastic parameterization 
for the convection trigger in a standard weather model

Introduction

Methods

Results

Future Work

Data
• Observed large-scale atmospheric variables from Atmospheric Radiation 

Measurement (ARM) constrained variational analysis [4]
• Site: Southern Great Plains, USA, summer (June – August)
• Convective event: precipitation rate ≥ 0.5 mm/hr

Fig 2. Reliability curve for random forest after probability calibration

Fig 3. Feature importance ranking shows which inputs to the random forest are the 
most important predictors of convection for the Southern Great Plains site 

Fig 4. Diurnal cycle of convection for observations (green) vs model (blue)

Southern Great Plains, USA

Fig 1. Convection parameterization schemes represent an ensemble of cumulus clouds 
with subgrid-scale processes that collectively modify the large-scale atmospheric state
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Fig 5. Time series of observations of convection vs model prediction and model 
probability for June – August 2015
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